光电流
光电探测器
光电子学
材料科学
电子工程
工程类
作者
Pargam Vashishtha,Shubhendra Kumar Jain,Pukhraj Prajapat,Ajay Kumar Verma,Neha Aggarwal,Billy J. Murdoch,Sumeet Walia,Govind Gupta
标识
DOI:10.1021/acsaom.4c00166
摘要
This Communication has reported a GaN-nanowall-network-based bidirectional photocurrent self-driven photodetector. The device leverages the unique properties of gallium nitride nanowall networks to modulate surface potentials, enabling bidirectional photocurrent generation and a self-driven nature. The detector enables a negative photocurrent under 266 nm illumination, while a positive photocurrent is obtained with a 355 nm source at 0 V applied bias. Peak responsivities of −2.5 and 1.7 A W–1 have been attained for the illumination wavelengths of 266 and 355 nm, respectively, under self-driven mode. Distinct logic states were realized by selectively illuminating the device with different wavelengths. The device operates as self-driven logic gates with output states defined relative to a fiducial zero point. The photocurrent direction and magnitude are also adjustable by varying the optical power intensity. Our findings demonstrate the potential of GaN-nanowall networks for realizing versatile, futuristic multifunction ultraviolet self-driven photonic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI