Deep Reinforcement Learning-Based Adaptive Computation Offloading and Power Allocation in Vehicular Edge Computing Networks

计算卸载 马尔可夫决策过程 计算机科学 强化学习 边缘计算 资源配置 数学优化 移动边缘计算 云计算 分布式计算 计算 GSM演进的增强数据速率 能源消耗 马尔可夫过程 人工智能 计算机网络 工程类 算法 统计 数学 电气工程 操作系统
作者
Bin Qiu,Yunxiao Wang,Hailin Xiao,Zhongshan Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13339-13349 被引量:5
标识
DOI:10.1109/tits.2024.3391831
摘要

As a novel paradigm, Vehicular Edge Computing (VEC) can effectively support computation-intensive or delay-sensitive applications in the Internet of Vehicles era. Computation offloading and resource management strategies are key technologies that directly determine the system cost in VEC networks. However, due to vehicle mobility and stochastic arrival computation tasks, designing an optimal offloading and resource allocation policy is extremely challenging. To solve this issue, a deep reinforcement learning-based intelligent offloading and power allocation scheme is proposed for minimizing the total delay cost and energy consumption in dynamic heterogeneous VEC networks. Specifically, we first construct an end-edge-cloud offloading model in a bidirectional road scenario, taking into account stochastic task arrival, time-varying channel conditions, and vehicle mobility. With the objective of minimizing the long-term total cost composed of the energy consumption and task delay, the Markov Decision Process (MDP) can be employed to solve such optimization problems. Moreover, considering the high-dimensional continuity of the action space and the dynamics of task generation, we propose a deep deterministic policy gradient-based adaptive computation offloading and power allocation (DDPG-ACOPA) algorithm to solve the formulated MDP problem. Extensive simulation results demonstrate that the proposed DDPG-ACOPA algorithm performs better in the dynamic heterogeneous VEC environment, significantly outperforming the other four baseline schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
英姑应助Aliothae采纳,获得10
2秒前
lhy发布了新的文献求助10
2秒前
大意的雪一完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
zzn发布了新的文献求助10
4秒前
btyyl发布了新的文献求助10
5秒前
科研通AI2S应助江洋大盗采纳,获得10
5秒前
称心冬云发布了新的文献求助30
5秒前
Felix完成签到,获得积分10
5秒前
凌风发布了新的文献求助10
6秒前
6秒前
7秒前
阿巴阿巴发布了新的文献求助10
7秒前
思源应助滚蛋居居采纳,获得10
7秒前
jing发布了新的文献求助10
7秒前
lm00024发布了新的文献求助10
7秒前
8秒前
lan发布了新的文献求助10
8秒前
科研通AI2S应助哼哼采纳,获得10
8秒前
研友_VZG7GZ应助xby采纳,获得10
8秒前
CipherSage应助Camel采纳,获得10
9秒前
9秒前
9秒前
maomao完成签到,获得积分10
10秒前
毛毛完成签到,获得积分20
10秒前
斯内克完成签到 ,获得积分10
10秒前
大个应助Qiao采纳,获得10
11秒前
积极孤菱完成签到,获得积分10
11秒前
迷人兰花发布了新的文献求助10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806277
求助须知:如何正确求助?哪些是违规求助? 3351028
关于积分的说明 10352662
捐赠科研通 3066937
什么是DOI,文献DOI怎么找? 1684167
邀请新用户注册赠送积分活动 809367
科研通“疑难数据库(出版商)”最低求助积分说明 765487