亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Highly ordered macroporous hydrogen-bonded organic frameworks based on small biocompatible molecules

作者
Qiuxia Li,Weiping Cai,Xiao‐Liang Ye,Yi Zeng,A. R. Mahammed Shaheer,Zaisheng Ye,Tian‐Fu Liu
出处
期刊:Nature Communications [Springer Nature]
标识
DOI:10.1038/s41467-025-67123-7
摘要

Abstract Template method offers a promising strategy for synthesizing large pore inaccessible through traditional molecular design. However, this approach has not yet been successfully implemented in molecular assemblies based on weak non-covalent interactions (NCIs), mainly because the assemblies often deviate from original structures during template-assisted syntheses, and the resulting porous structures lack the robustness to survive upon template removal. In this work, we address these challenges through choosing small biocompatible building blocks featuring multiple hydrogen-bonded sites and extensive π conjugation, enabling self-assembly into desired structure in the presence of templates and ensure structural integration upon template removal. As a result, the transformation from densely packed hydrogen-bonded crystalline materials to macroporous structure, referred to as hydrogen-bonded organic frameworks (HOFs), becomes achievable. This strategy facilitates the fabrication of highly ordered materials in single-crystal form with high physiological stability, and enhanced mass transfer. Importantly, it greatly broadens the HOF library to small, affordable, low-toxic, and clinically applicable molecules, making HOFs promising biocompatible porous substrates for bio-related applications such as enzyme immobilization. Herein, we successfully loaded trypsin into macroporous HOFs, which function as effective cellular scaffolds and promote the differentiation of peripheral blood mononuclear cells into fibrocytes, demonstrating their promising potential for biologic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
CipherSage应助细草微风岸采纳,获得10
6秒前
JEK发布了新的文献求助10
7秒前
12秒前
18秒前
852应助甜蜜乐松采纳,获得10
19秒前
21秒前
21秒前
22秒前
桃核发布了新的文献求助20
28秒前
33秒前
52秒前
FashionBoy应助桃核采纳,获得10
59秒前
仲夏夜之梦完成签到,获得积分10
1分钟前
华仔应助大林采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
甜蜜乐松发布了新的文献求助10
1分钟前
大模型应助羞涩的菲鹰采纳,获得10
1分钟前
范yx完成签到 ,获得积分10
1分钟前
YJY完成签到 ,获得积分10
1分钟前
大林发布了新的文献求助10
1分钟前
1分钟前
来栖暁发布了新的文献求助10
1分钟前
flyingpig发布了新的文献求助10
1分钟前
陶醉的蜜蜂完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
牧沛凝完成签到 ,获得积分10
1分钟前
1分钟前
观澜发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
keke完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606552
求助须知:如何正确求助?哪些是违规求助? 4690976
关于积分的说明 14866654
捐赠科研通 4706811
什么是DOI,文献DOI怎么找? 2542800
邀请新用户注册赠送积分活动 1508189
关于科研通互助平台的介绍 1472276