Lightweight target detection for the field flat jujube based on improved YOLOv5

棱锥(几何) 人工智能 特征(语言学) 增采样 计算机科学 特征提取 目标检测 行人检测 卷积(计算机科学) 模式识别(心理学) 领域(数学) 计算机视觉 探测器 算法 图像(数学) 人工神经网络 数学 工程类 哲学 语言学 几何学 纯数学 行人 运输工程 电信
作者
Shi-Lin Li,Shujuan Zhang,Jianxin Xue,Haixia Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107391-107391 被引量:52
标识
DOI:10.1016/j.compag.2022.107391
摘要

The efficient detection of the flat jujube in a complex natural environment has great significance in intelligent agricultural operations. Aiming at the problems of the low detection efficiency of field flat jujubes and complex target detection algorithms that are difficult to deploy on low-cost equipment, an improved lightweight algorithm based on You Only Look Once (YOLOv5) is proposed. First, the method screens for the multiscale detection structure that is suitable for the flat jujube by adjusting the number of layers of target detection, which improves the accuracy of detection and reduces the nuisance parameter. Then, multiscale feature fusion is achieved more efficiently by using the bidirectional feature pyramid network (BiFPN), and the feature extraction capability of the model is further improved by introducing a dual coordinate attention mechanism. Finally, the method reduces the difficulties of the model by introducing depthwise separable convolution and adding a ghost module after upsampling layers. The experimental results showed that the mean average precision (mAP) and model size of the lightweight network reached 97.2 % and 7.1 MB. Compared with the YOLOv5 baseline network, the parameters decreased by 49.15 %, while the mAP increased by 1.8 %. The method further improved algorithm performance and reduced computational cost compared with the mainstream one-stage target detection algorithms of the YOLOv5s, YOLOx_s, YOLOv4, YOLOv3 and single shot multibox detector (SSD). Compared to these algorithms, the mAP of the proposed improved model increased by 1.8 %, 0.9 %, 5.5 %, 6.5 % and 2.9 %, respectively. Meanwhile, the model size was compressed by 49.15 %, 73.99 %, 94.42 %, 94.24 % and 86.69 %, respectively. The improved algorithm has higher detection accuracy, while reducing the calculations and parameters, which reduces the dependence on hardware and provides a reference for deploying automated picking of the field flat jujube.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ira完成签到,获得积分10
1秒前
科研通AI5应助chenguoxin111采纳,获得30
1秒前
海洋完成签到,获得积分10
2秒前
shisui发布了新的文献求助20
3秒前
3秒前
任性的傲柏完成签到,获得积分10
4秒前
4秒前
叶伟发布了新的文献求助10
4秒前
无花果应助激动的慕凝采纳,获得10
5秒前
汉堡包应助hehe采纳,获得10
5秒前
6秒前
7秒前
慕青应助凋零伴月笙采纳,获得10
8秒前
yyymmma发布了新的文献求助10
8秒前
8秒前
huxuehong发布了新的文献求助10
9秒前
慕青应助有人喜欢蓝采纳,获得10
9秒前
smz完成签到 ,获得积分10
9秒前
林林林林发布了新的文献求助10
10秒前
10秒前
小罗完成签到,获得积分20
10秒前
11秒前
在水一方应助KhalilHao采纳,获得10
12秒前
manny完成签到,获得积分10
12秒前
NexusExplorer应助书虫采纳,获得10
12秒前
13秒前
李明发布了新的文献求助10
14秒前
15秒前
猪猪hero发布了新的文献求助30
16秒前
朱艺发布了新的文献求助10
16秒前
voifhpg完成签到 ,获得积分10
16秒前
16秒前
18秒前
chenguoxin111发布了新的文献求助30
18秒前
snowwang发布了新的文献求助10
20秒前
聂聪完成签到,获得积分10
20秒前
螃蟹医生完成签到,获得积分10
21秒前
21秒前
21秒前
科研通AI5应助张强采纳,获得10
21秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820741
求助须知:如何正确求助?哪些是违规求助? 3363591
关于积分的说明 10424100
捐赠科研通 3082016
什么是DOI,文献DOI怎么找? 1695425
邀请新用户注册赠送积分活动 815102
科研通“疑难数据库(出版商)”最低求助积分说明 768874