Modeling continuous self-report measures of perceived emotion using generalized additive mixed models.

范畴变量 广义加性模型 模棱两可 推论 广义线性混合模型 自相关 计算机科学 面部表情 混合模型 特征(语言学) 统计推断 计量经济学 人工智能 统计 数学 机器学习 哲学 语言学 程序设计语言
作者
Gary McKeown,Ian Sneddon
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:19 (1): 155-174 被引量:55
标识
DOI:10.1037/a0034282
摘要

Emotion research has long been dominated by the "standard method" of displaying posed or acted static images of facial expressions of emotion. While this method has been useful, it is unable to investigate the dynamic nature of emotion expression. Although continuous self-report traces have enabled the measurement of dynamic expressions of emotion, a consensus has not been reached on the correct statistical techniques that permit inferences to be made with such measures. We propose generalized additive models and generalized additive mixed models as techniques that can account for the dynamic nature of such continuous measures. These models allow us to hold constant shared components of responses that are due to perceived emotion across time, while enabling inference concerning linear differences between groups. The generalized additive mixed model approach is preferred, as it can account for autocorrelation in time series data and allows emotion decoding participants to be modeled as random effects. To increase confidence in linear differences, we assess the methods that address interactions between categorical variables and dynamic changes over time. In addition, we provide comments on the use of generalized additive models to assess the effect size of shared perceived emotion and discuss sample sizes. Finally, we address additional uses, the inference of feature detection, continuous variable interactions, and measurement of ambiguity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜的夜天完成签到,获得积分10
刚刚
1秒前
小杭76应助曾经的凌青采纳,获得10
1秒前
黎明完成签到,获得积分10
1秒前
澈千子发布了新的文献求助10
2秒前
晴雨完成签到,获得积分10
2秒前
kehan完成签到,获得积分10
2秒前
无花果应助满天星辰采纳,获得10
3秒前
wsn发布了新的文献求助10
3秒前
3秒前
4秒前
充电宝应助xx采纳,获得10
4秒前
李阳完成签到,获得积分10
4秒前
4秒前
宁霸完成签到,获得积分0
4秒前
淡淡晓夏完成签到,获得积分20
5秒前
坦率惊蛰发布了新的文献求助10
5秒前
6秒前
7秒前
可爱的函函应助aliensas采纳,获得10
8秒前
虎皮猫大人应助aliensas采纳,获得10
8秒前
8秒前
yaoqing发布了新的文献求助10
9秒前
chenchen发布了新的文献求助10
10秒前
justinli发布了新的文献求助10
11秒前
有机哈基米完成签到,获得积分10
12秒前
12秒前
淡淡晓夏发布了新的文献求助10
12秒前
慕青应助丰富的不惜采纳,获得10
12秒前
卢小军完成签到,获得积分10
12秒前
欧贤书完成签到,获得积分20
12秒前
DEUX完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
田様应助wsn采纳,获得10
14秒前
mmyhn发布了新的文献求助10
14秒前
15秒前
科研通AI6应助栀初采纳,获得10
15秒前
机智的代真完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879