Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging

高光谱成像 用水效率 RGB颜色模型 蒸散量 生物量(生态学) 用水 含水量 农学 生物 作物 干重 天蓬 环境科学 园艺 植物 遥感 灌溉 生态学 人工智能 工程类 地质学 计算机科学 岩土工程
作者
Yufeng Ge,Geng Bai,Vincent Stoerger,James C. Schnable
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:127: 625-632 被引量:263
标识
DOI:10.1016/j.compag.2016.07.028
摘要

Automated collection of large scale plant phenotype datasets using high throughput imaging systems has the potential to alleviate current bottlenecks in data-driven plant breeding and crop improvement. In this study, we demonstrate the characterization of temporal dynamics of plant growth and water use, and leaf water content of two maize genotypes under two different water treatments. RGB (Red Green Blue) images are processed to estimate projected plant area, which are correlated with destructively measured plant shoot fresh weight (FW), dry weight (DW) and leaf area. Estimated plant FW and DW, along with pot weights, are used to derive daily plant water consumption and water use efficiency (WUE) of the individual plants. Hyperspectral images of plants are processed to extract plant leaf reflectance and correlate with leaf water content (LWC). Strong correlations are found between projected plant area and all three destructively measured plant parameters (R2 > 0.95) at early growth stages. The correlations become weaker at later growth stages due to the large difference in plant structure between the two maize genotypes. Daily water consumption (or evapotranspiration) is largely determined by water treatment, whereas WUE (or biomass accumulation per unit of water used) is clearly determined by genotype, indicating a strong genetic control of WUE. LWC is successfully predicted with the hyperspectral images for both genotypes (R2 = 0.81 and 0.92). Hyperspectral imaging can be a very powerful tool to phenotype biochemical traits of the whole maize plants, complementing RGB for plant morphological trait analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木头人重新开启了婷婷文献应助
刚刚
旺仔发布了新的文献求助10
刚刚
刚刚
卜卜脆完成签到,获得积分10
刚刚
ntzzz完成签到,获得积分10
刚刚
科研通AI2S应助迅速的仰采纳,获得10
1秒前
yoesyte发布了新的文献求助20
1秒前
陈曦完成签到,获得积分10
2秒前
深夜中的守望人完成签到 ,获得积分10
2秒前
bb完成签到,获得积分10
3秒前
科研通AI2S应助爱听歌代萱采纳,获得10
3秒前
YWH完成签到,获得积分10
3秒前
柯柯发布了新的文献求助10
3秒前
无花果应助清爽的水蓝采纳,获得10
3秒前
听雨潇潇发布了新的文献求助10
4秒前
传奇3应助化学兔八哥采纳,获得10
4秒前
yao完成签到,获得积分10
5秒前
叼面包的数学狗完成签到 ,获得积分10
5秒前
Capper完成签到,获得积分10
5秒前
正直宝贝完成签到,获得积分10
5秒前
希希研途完成签到,获得积分20
6秒前
6秒前
6秒前
Young4399完成签到 ,获得积分10
7秒前
科研通AI2S应助aaaa采纳,获得10
7秒前
材料化学左亚坤完成签到,获得积分10
7秒前
8秒前
爆米花应助das采纳,获得10
8秒前
丘比特应助wpeng326采纳,获得10
8秒前
醉熏的水绿完成签到 ,获得积分10
9秒前
xingl完成签到,获得积分10
10秒前
llig给llig的求助进行了留言
10秒前
10秒前
10秒前
苏苏完成签到,获得积分10
10秒前
认真水儿完成签到,获得积分20
10秒前
铭铭就完成签到 ,获得积分10
10秒前
正直宝贝发布了新的文献求助10
11秒前
Yan完成签到,获得积分10
11秒前
小悦子完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837940
求助须知:如何正确求助?哪些是违规求助? 3380118
关于积分的说明 10512448
捐赠科研通 3099689
什么是DOI,文献DOI怎么找? 1707202
邀请新用户注册赠送积分活动 821502
科研通“疑难数据库(出版商)”最低求助积分说明 772667