Mining Users Trust From E-Commerce Reviews Based on Sentiment Similarity Analysis

相似性(几何) 计算机科学 情绪分析 传递关系 情报检索 推荐系统 特征(语言学) 点(几何) 感觉 比例(比率) 代表(政治) 数据挖掘 人工智能 心理学 数学 社会心理学 政治学 图像(数学) 语言学 哲学 物理 几何学 组合数学 量子力学 政治 法学
作者
Shaozhong Zhang,Haidong Zhong
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 13523-13535 被引量:45
标识
DOI:10.1109/access.2019.2893601
摘要

Consumers' reviews in E-commerce systems are usually treated as the important resources that reflect user's experience, feelings, and willingness to purchase items. All this information may involve consumers' views on things that can express interest, sentiments, and opinions. Many kinds of research have shown that people are more likely to trust each other with the same attitude toward similar things. In this paper, we consider seeking and accepting sentiments and suggestions in E-commerce systems somewhat implies a form of trust between consumers during shopping. Following this view of point, an E-commerce system reviews mining oriented sentiment similarity analysis approach is put forward to exploring users' similarity and their trust. We divide the trust into two categories, namely direct trust, and propagation of trust, which represents a trust relationship between two individuals. The direct trust degree is obtained from sentiment similarity, and we present an entity-sentiment word pair mining method for similarity feature extraction. The propagation of trust is calculated according to the transitivity feature. Using the proposed trust representation model, we use the shortest path to describe the tightness of trust and put forward an improved shortest path algorithm to figure out the propagation trust relationship between users. A large-scale E-commerce website reviews dataset is collected to examine the accuracy of the algorithms and feasibility of the models. The experimental results indicate that the sentiment similarity analysis can be an efficient method to find trust between users in E-commerce systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助kiwi采纳,获得10
刚刚
DAI正杰完成签到,获得积分10
1秒前
miya完成签到,获得积分10
2秒前
2秒前
李二狗发布了新的文献求助200
2秒前
TianFuAI完成签到,获得积分10
3秒前
3秒前
4秒前
悦耳的秋完成签到,获得积分10
4秒前
魏一一完成签到,获得积分10
6秒前
6秒前
7秒前
斯文败类应助热心纸鹤采纳,获得10
7秒前
酷波er应助苹果烧鹅采纳,获得10
7秒前
ding应助黑猫小苍采纳,获得10
8秒前
冷静机器猫完成签到,获得积分10
8秒前
Hello应助浙江嘉兴采纳,获得10
8秒前
飘逸雨珍发布了新的文献求助10
8秒前
内向宛凝发布了新的文献求助10
8秒前
追光者完成签到,获得积分10
9秒前
linelolo完成签到,获得积分10
9秒前
10秒前
野草完成签到,获得积分10
11秒前
WW发布了新的文献求助10
11秒前
mmgf发布了新的文献求助10
11秒前
ECUST完成签到 ,获得积分10
11秒前
无人深空发布了新的文献求助10
12秒前
淡定完成签到,获得积分20
12秒前
13秒前
HP完成签到,获得积分10
13秒前
追光者发布了新的文献求助20
14秒前
SYLH应助傅双庆采纳,获得10
14秒前
研友_8yX0xZ发布了新的文献求助10
14秒前
迷人芒果完成签到 ,获得积分10
14秒前
科目三应助潞垚采纳,获得10
15秒前
16秒前
开朗的觅柔完成签到,获得积分10
16秒前
林夕发布了新的文献求助20
17秒前
飘逸雨珍完成签到,获得积分20
17秒前
莫休发布了新的文献求助10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808849
求助须知:如何正确求助?哪些是违规求助? 3353530
关于积分的说明 10365783
捐赠科研通 3069785
什么是DOI,文献DOI怎么找? 1685776
邀请新用户注册赠送积分活动 810723
科研通“疑难数据库(出版商)”最低求助积分说明 766304