肾脏疾病
糖尿病
医学
临床试验
病历
数据集
预测能力
真实世界数据
内科学
数据挖掘
完备性(序理论)
疾病
重症监护医学
计算机科学
人工智能
数据科学
数学
内分泌学
哲学
数学分析
认识论
作者
Stefan Ravizza,Tony Huschto,A. K. Adamov,Lars Böhm,Alexander Büsser,Frederik F. Flöther,Rolf Hinzmann,Helena König,Scott M. McAhren,D. H. Robertson,Titus Schleyer,Bernd Schneidinger,Wolfgang Petrich
出处
期刊:Nature Medicine
[Nature Portfolio]
日期:2018-11-14
卷期号:25 (1): 57-59
被引量:133
标识
DOI:10.1038/s41591-018-0239-8
摘要
Diagnostic procedures, therapeutic recommendations, and medical risk stratifications are based on dedicated, strictly controlled clinical trials. However, a plethora of real-world medical data exists, whereupon the increase in data volume comes at the expense of completeness, uniformity, and control. Here, a case-by-case comparison shows that the predictive power of our real world data-based model for diabetes-related chronic kidney disease outperforms published algorithms, which were derived from clinical study data.
科研通智能强力驱动
Strongly Powered by AbleSci AI