分叉
霍普夫分叉
数学
单调函数
跨临界分岔
流行病模型
鞍结分岔
应用数学
理论(学习稳定性)
分岔图
博格达诺夫-塔肯分岔
分岔理论
倍周期分岔
统计物理学
数学分析
物理
计算机科学
非线性系统
人口
人口学
量子力学
机器学习
社会学
作者
Moustafa El-Shahed,Ibrahim. M. E. Abdelstar
标识
DOI:10.1515/ijnsns-2018-0088
摘要
Abstract In this paper, the dynamical behavior of a discrete SIR epidemic model with fractional-order with non-monotonic incidence rate is discussed. The sufficient conditions of the locally asymptotic stability and bifurcation analysis of the equilibrium points are also discussed. The numerical simulations come to illustrate the dynamical behaviors of the model such as flip bifurcation, Hopf bifurcation and chaos phenomenon. The results of numerical simulation verify our theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI