数学
闵可夫斯基空间
纯数学
刚度(电磁)
混合体积
正多边形
二次方程
猜想
简并能级
财产(哲学)
不平等
Dirichlet分布
Minkowski不等式
二次型(统计学)
数学分析
凸体
组合数学
凸优化
几何学
线性不等式
坎托洛维奇不等式
哲学
物理
结构工程
认识论
量子力学
工程类
边值问题
作者
Yair Shenfeld,Ramon van Handel
标识
DOI:10.1215/00127094-2021-0033
摘要
In a seminal paper "Volumen und Oberfläche" (1903), Minkowski introduced the basic notion of mixed volumes and the corresponding inequalities that lie at the heart of convex geometry. The fundamental importance of characterizing the extremals of these inequalities was already emphasized by Minkowski himself, but has to date only been resolved in special cases. In this paper, we completely settle the extremals of Minkowski's quadratic inequality, confirming a conjecture of R. Schneider. Our proof is based on the representation of mixed volumes of arbitrary convex bodies as Dirichlet forms associated to certain highly degenerate elliptic operators. A key ingredient of the proof is a quantitative rigidity property associated to these operators.
科研通智能强力驱动
Strongly Powered by AbleSci AI