Automated Measurement of Pancreatic Fat Deposition on Dixon MRI Using nnU‐Net

医学 内科学 胰腺 核医学 磁共振成像 卡帕 胃肠病学 内分泌学 放射科 数学 几何学
作者
Dingyi Lin,Ziyan Wang,Hong Li,Hongxi Zhang,Liping Deng,Hong Ren,Shuiya Sun,Fenping Zheng,Jiaqiang Zhou,Min Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (1): 296-307 被引量:13
标识
DOI:10.1002/jmri.28275
摘要

Background Pancreatic fat accumulation may cause or aggravate the process of acute pancreatitis, β‐cell dysfunction, T2DM disease, and even be associated with pancreatic tumors. The pathophysiology of fatty pancreas remains overlooked and lacks effective imaging diagnostics. Purpose To automatically measure the distribution of pancreatic fat deposition on Dixon MRI in multicenter/population datasets using nnU‐Net models. Study Type Retrospective. Population A total of 176 obese/nonobese subjects (90 males, 86 females; mean age, 27.2 ± 19.7) were enrolled, including a training set ( N = 132) and a testing set ( N = 44). Field Strength/Sequence A 3 T and 1.5 T/gradient echo T 1 dual‐echo Dixon. Assessment The segmentation results of four types of nnU‐Net models were compared using dice similarity coefficient (DSC), positive predicted value (PPV), and sensitivity. The ground truth was the manual delineation by two radiologists according to in‐phase (IP) and opposed‐phase (OP) images. Statistical Tests The group difference of segmentation results of four models were assessed by the Kruskal–Wallis H test with Dunn–Bonferroni comparisons. The interobserver agreement of pancreatic fat fraction measurements across three observers and test–retest reliability of human and machine were assessed by intragroup correlation coefficient (ICC). P < 0.05 was considered statistically significant. Results The three‐dimensional (3D) dual‐contrast model had significantly improved performance than 2D dual‐contrast (DSC/sensitivity) and 3D one‐contrast (IP) models (DSC/PPV/sensitivity) and had less errors than 3D one‐contrast (OP) model according to higher DSC and PPV (not significant), with a mean DSC of 0.9158, PPV of 0.9105 and sensitivity of 0.9232 in the testing set. The test–retest ICC of this model was above 0.900 in all pancreatic regions, exceeded human. Data Conclusion 3D Dual‐contrast nnU‐Net aided segmentation of pancreas on Dixon images appears to be adaptable to multicenter/population datasets. It fully automates the assessment of pancreatic fat distribution and has high reliability. Evidence Level 3 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助LSH采纳,获得10
1秒前
1秒前
capx完成签到,获得积分10
1秒前
2秒前
疯狂的咖啡豆完成签到,获得积分20
2秒前
李爱国应助玩命的纸鹤采纳,获得10
2秒前
2秒前
xy发布了新的文献求助10
3秒前
Torankus完成签到,获得积分20
3秒前
4秒前
Torankus发布了新的文献求助10
6秒前
6秒前
小羊羊完成签到,获得积分10
7秒前
婉婉完成签到,获得积分10
7秒前
SciGPT应助panpan采纳,获得10
7秒前
10秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得30
11秒前
MX应助科研通管家采纳,获得20
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
阳佟水蓉完成签到,获得积分10
13秒前
14秒前
许欧发布了新的文献求助10
14秒前
15秒前
桃子爱学习完成签到,获得积分10
15秒前
15秒前
zsfxqq完成签到 ,获得积分10
18秒前
你可以永远相信Sccc完成签到 ,获得积分10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835549
求助须知:如何正确求助?哪些是违规求助? 3377872
关于积分的说明 10500941
捐赠科研通 3097454
什么是DOI,文献DOI怎么找? 1705830
邀请新用户注册赠送积分活动 820717
科研通“疑难数据库(出版商)”最低求助积分说明 772219