Machine learning reveals salivary glycopatterns as potential biomarkers for the diagnosis and prognosis of papillary thyroid cancer

甲状腺乳突癌 甲状腺癌 医学 逻辑回归 甲状腺 生物标志物 肿瘤科 内科学 甲状腺结节 病理 生物 生物化学
作者
Xiameng Ren,Jian Shu,Junhong Wang,Yonghong Guo,Ying Zhang,Lixin Yue,Hanjie Yu,Wentian Chen,Zhang Chen,Jiancang Ma,Zheng Li
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:215: 280-289 被引量:16
标识
DOI:10.1016/j.ijbiomac.2022.05.194
摘要

The diagnosis of thyroid cancer, especially papillary thyroid cancer (PTC), is increasing rapidly worldwide. In this study, we aimed to study the glycosylation of salivary proteins associated with PTC and assess the likelihood that salivary glycopatterns may be a potential biomarker of PTC diagnosis. Firstly, 22 benign thyroid nodule (BTN) samples, 27 PTC samples, and 30 healthy volunteers (HV) samples were collected to probe the difference of salivary glycopatterns associated with PTC using lectin microarrays. Then, five machine learning models including K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) were established to distinguish HV, BTN and PTC based on the changes of salivary glycopatterns. As a result, SVM had the best diagnostic effect with an accuracy rate of 92 % in testing set. Besides, lectin microarrays were used to explore the differences in salivary glycopatterns of 26 paired salivary samples of PTC patients before and after operation in order to probe into salivary glycopatterns as potential biomarkers for prognosis of PTC patients. The results showed that the levels of salivary glycopatterns recognized by 6 different lectins in patients after the operation almost convergenced with HVs. This study could help to screen and assess patients with PTC and their prognosis based on precise changes of salivary glycopatterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李Li完成签到 ,获得积分10
刚刚
刘星宇完成签到,获得积分10
刚刚
TingtingGZ发布了新的文献求助10
刚刚
导师老八完成签到,获得积分10
2秒前
高兴小珍完成签到 ,获得积分20
2秒前
在吃饭的时候吃饭完成签到,获得积分10
2秒前
LIJIANGSHENG发布了新的文献求助10
2秒前
gm完成签到,获得积分10
5秒前
小马甲应助路遥v采纳,获得10
5秒前
田成风发布了新的文献求助10
5秒前
dhts应助峰feng采纳,获得10
7秒前
学业顺利发布了新的文献求助10
7秒前
爆米花应助有魅力的蘑菇采纳,获得10
7秒前
小白完成签到 ,获得积分10
10秒前
希望天下0贩的0应助nana采纳,获得10
10秒前
12秒前
断线的风筝完成签到,获得积分20
12秒前
yanjiusheng完成签到,获得积分10
13秒前
Jasper应助小刘采纳,获得10
13秒前
孙燕应助1234采纳,获得10
13秒前
14秒前
LIJIANGSHENG完成签到,获得积分10
15秒前
18秒前
GanQ完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
今后应助Silole采纳,获得10
20秒前
笑点低乞完成签到,获得积分10
21秒前
路遥v发布了新的文献求助10
22秒前
wodeqiche2007发布了新的文献求助30
23秒前
小刘发布了新的文献求助10
24秒前
mov发布了新的文献求助10
24秒前
24秒前
稳重的安萱完成签到,获得积分10
26秒前
wyp完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
天天快乐应助qvqtttttt采纳,获得10
28秒前
catyew完成签到 ,获得积分10
29秒前
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866515
求助须知:如何正确求助?哪些是违规求助? 3408999
关于积分的说明 10660878
捐赠科研通 3133043
什么是DOI,文献DOI怎么找? 1728003
邀请新用户注册赠送积分活动 832636
科研通“疑难数据库(出版商)”最低求助积分说明 780336