亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period

草原 随机森林 物候学 特征(语言学) 特征选择 遥感 植被(病理学) 土地覆盖 生物量(生态学) 环境科学 计算机科学 生态学 地理 土地利用 人工智能 医学 语言学 哲学 病理 生物
作者
Yifan Zhao,Weiwei Zhu,Panpan Wei,Peng Fang,Xiwang Zhang,Y. Niu,Wenjun Liu,Hao Zhao,Qirui Wu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:135: 108529-108529 被引量:39
标识
DOI:10.1016/j.ecolind.2021.108529
摘要

It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
风趣代容发布了新的文献求助10
6秒前
12秒前
17秒前
18秒前
CipherSage应助龍咳采纳,获得10
21秒前
22秒前
HXXXY发布了新的文献求助10
24秒前
石头完成签到 ,获得积分10
29秒前
30秒前
风趣代容完成签到,获得积分10
36秒前
风趣煎蛋发布了新的文献求助10
37秒前
钱小豪应助科研通管家采纳,获得10
39秒前
钱小豪应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
39秒前
小蘑菇应助科研通管家采纳,获得10
39秒前
钱小豪应助科研通管家采纳,获得10
39秒前
钱小豪应助科研通管家采纳,获得10
39秒前
48秒前
RONG完成签到 ,获得积分10
50秒前
55秒前
56秒前
龍咳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
星海梦幻完成签到 ,获得积分10
1分钟前
1分钟前
13508104971完成签到,获得积分10
1分钟前
1分钟前
13508104971发布了新的文献求助10
1分钟前
Orange应助swing采纳,获得10
1分钟前
无可无不可完成签到,获得积分10
1分钟前
小马甲应助龍咳采纳,获得10
2分钟前
2分钟前
任秦发布了新的文献求助10
2分钟前
无限鸵鸟完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4136083
求助须知:如何正确求助?哪些是违规求助? 3672803
关于积分的说明 11611375
捐赠科研通 3368247
什么是DOI,文献DOI怎么找? 1850334
邀请新用户注册赠送积分活动 913772
科研通“疑难数据库(出版商)”最低求助积分说明 828910