TFAM公司
生物
卵母细胞
线粒体DNA
胚胎
细胞生物学
胚胎发生
DNA复制
分子生物学
遗传学
DNA
基因
作者
Emma Spikings,Jon Alderson,Justin C. St. John
标识
DOI:10.1095/biolreprod.106.054536
摘要
Cellular ATP is mainly generated through mitochondrial oxidative phosphorylation, which is dependent on mitochondrial DNA (mtDNA). We have previously demonstrated the importance of oocyte mtDNA for porcine and human fertilization. However, the role of nuclear-encoded mitochondrial replication factors during oocyte and embryo development is not yet understood. We have analyzed two key factors, mitochondrial transcription factor A (TFAM) and polymerase gamma (POLG), to determine their role in oocyte and early embryo development. Competent and incompetent oocytes, as determined by brilliant cresyl blue (BCB) dye, were assessed intermittently during the maturation process for TFAM and POLG mRNA using real-time RT-PCR, for TFAM and POLG protein using immunocytochemistry, and for mtDNA copy number using real-time PCR. Analysis was also carried out following treatment of maturing oocytes with the mtDNA replication inhibitor, 2′,3′-dideoxycytidine (ddC). Following in vitro fertilization, preimplantation embryos were also analyzed. Despite increased levels of TFAM and POLG mRNA and protein at the four-cell stage, no increase in mtDNA copy number was observed in early preimplantation development. To compensate for this, mtDNA appeared to be replicated during oocyte maturation. However, significant differences in nuclear-encoded regulatory protein expression were observed between BCB+ and BCB− oocytes and between untreated oocytes and those treated with ddC. These changes resulted in delayed mtDNA replication, which correlated to reduced fertilization and embryonic development. We therefore conclude that adherence to the regulation of the timing of mtDNA replication during oocyte maturation is essential for successful embryonic development.
科研通智能强力驱动
Strongly Powered by AbleSci AI