磁电阻
抗磁性
材料科学
金属
碳化物
磁化
凝聚态物理
金属-绝缘体过渡
物理
磁场
冶金
量子力学
作者
Patrick M. Vora,P. Gopu,Mariem R. Rosario-Canales,Carlos R. Pérez,Yury Gogotsi,Jorge J. Santiago‐Avilés,James M. Kikkawa
标识
DOI:10.1103/physrevb.84.155114
摘要
Titanium-carbide-derived carbons (TiC-CDCs) are porous $s{p}^{2}$-bonded networks synthesized by exposing TiC to chlorine gas at an elevated temperature. The latter ``chlorination temperature'' adjusts the size of the pores and the $s{p}^{2}$-bonded carbon domains within this material. We perform magnetoresistance, electronic transport, and superconducting quantum interference device magnetization measurements on TiC-CDC samples prepared at different chlorination temperatures. Transport reveals a metal-insulator transition where high (low) chlorination temperature samples are on the metallic (insulating) side of the transition. Magnetoresistance measurements are consistent with transport in the weak and strong localization regimes for metallic and insulating samples, respectively. Changes in diamagnetism, electronic transport, and magnetoresistance data across the metal-insulator transition are coordinated, suggesting that all three properties are controlled by a single parameter, likely the expansion of $s{p}^{2}$-bonded domains.
科研通智能强力驱动
Strongly Powered by AbleSci AI