已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature

均方误差 数学 统计 平均绝对误差 公制(单位) 运营管理 经济
作者
Tianfeng Chai,Roland R. Draxler
出处
期刊:Geoscientific Model Development [Copernicus Publications]
卷期号:7 (3): 1247-1250 被引量:4697
标识
DOI:10.5194/gmd-7-1247-2014
摘要

Abstract. Both the root mean square error (RMSE) and the mean absolute error (MAE) are regularly employed in model evaluation studies. Willmott and Matsuura (2005) have suggested that the RMSE is not a good indicator of average model performance and might be a misleading indicator of average error, and thus the MAE would be a better metric for that purpose. While some concerns over using RMSE raised by Willmott and Matsuura (2005) and Willmott et al. (2009) are valid, the proposed avoidance of RMSE in favor of MAE is not the solution. Citing the aforementioned papers, many researchers chose MAE over RMSE to present their model evaluation statistics when presenting or adding the RMSE measures could be more beneficial. In this technical note, we demonstrate that the RMSE is not ambiguous in its meaning, contrary to what was claimed by Willmott et al. (2009). The RMSE is more appropriate to represent model performance than the MAE when the error distribution is expected to be Gaussian. In addition, we show that the RMSE satisfies the triangle inequality requirement for a distance metric, whereas Willmott et al. (2009) indicated that the sums-of-squares-based statistics do not satisfy this rule. In the end, we discussed some circumstances where using the RMSE will be more beneficial. However, we do not contend that the RMSE is superior over the MAE. Instead, a combination of metrics, including but certainly not limited to RMSEs and MAEs, are often required to assess model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Novice6354完成签到 ,获得积分10
1秒前
1秒前
2秒前
健忘草莓发布了新的文献求助10
4秒前
NX发布了新的文献求助10
8秒前
Isaac完成签到 ,获得积分10
8秒前
yangjoy完成签到,获得积分10
15秒前
搜集达人应助Rookie采纳,获得10
18秒前
leolee完成签到,获得积分10
18秒前
大渡河完成签到,获得积分10
19秒前
里工完成签到 ,获得积分10
20秒前
可爱的函函应助健忘草莓采纳,获得10
21秒前
迷路冰颜完成签到 ,获得积分10
21秒前
维尼完成签到,获得积分10
21秒前
天天天才完成签到,获得积分10
22秒前
leolee发布了新的文献求助10
28秒前
慕青应助陈诚1111采纳,获得10
30秒前
30秒前
33秒前
39秒前
40秒前
Rookie发布了新的文献求助10
45秒前
lizibelle发布了新的文献求助10
46秒前
mmyhn完成签到,获得积分10
47秒前
默默白桃发布了新的文献求助10
47秒前
Fred发布了新的文献求助10
54秒前
zhangzhang发布了新的文献求助10
55秒前
wanci应助科研通管家采纳,获得10
56秒前
李爱国应助科研通管家采纳,获得10
57秒前
思源应助科研通管家采纳,获得10
57秒前
57秒前
orixero应助科研通管家采纳,获得10
57秒前
57秒前
57秒前
所所应助科研通管家采纳,获得10
57秒前
57秒前
zhou完成签到,获得积分10
1分钟前
AXLL完成签到 ,获得积分10
1分钟前
开胃咖喱完成签到,获得积分10
1分钟前
小猫来啦完成签到,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123993
求助须知:如何正确求助?哪些是违规求助? 3661911
关于积分的说明 11590071
捐赠科研通 3362451
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827823