Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions

聚类分析 相似性(几何) 计算生物学 计算机科学 结构相似性 模式识别(心理学) 人工智能 数据挖掘 生物 图像(数学)
作者
Te‐Lun Mai,Geng-Ming Hu,Chi‐Ming Chen
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:15 (7): 2123-2131 被引量:21
标识
DOI:10.1021/acs.jproteome.5b01031
摘要

Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单白梦完成签到,获得积分10
刚刚
脑洞疼应助酷酷的晓旋采纳,获得10
刚刚
陈_Ccc完成签到 ,获得积分10
1秒前
曹梦梦发布了新的文献求助20
1秒前
乌压压发布了新的文献求助10
1秒前
李健应助yy采纳,获得10
2秒前
花盈满袖完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
王舒心应助Yan要高飞采纳,获得10
3秒前
方法完成签到,获得积分10
4秒前
sh完成签到,获得积分10
5秒前
JY关闭了JY文献求助
6秒前
chenghuan完成签到,获得积分20
6秒前
Joshua完成签到,获得积分10
6秒前
6秒前
醉熏的含烟完成签到,获得积分10
7秒前
7秒前
hewd3发布了新的文献求助10
7秒前
miaomiao完成签到,获得积分10
7秒前
科研通AI2S应助整齐的茗茗采纳,获得10
7秒前
7秒前
科目三应助yang采纳,获得10
8秒前
Dan完成签到,获得积分10
8秒前
8秒前
隐形曼青应助liushiyi采纳,获得10
8秒前
贪玩的小夏完成签到,获得积分10
9秒前
深情安青应助YuGe采纳,获得10
9秒前
虎啊虎啊发布了新的文献求助10
11秒前
神勇绯完成签到 ,获得积分10
11秒前
爱笑的鱼完成签到,获得积分10
11秒前
11秒前
Joshua发布了新的文献求助10
11秒前
12秒前
bingbing完成签到,获得积分10
12秒前
gnr2000发布了新的文献求助30
12秒前
12秒前
YuuuY发布了新的文献求助10
13秒前
柒柒完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630828
求助须知:如何正确求助?哪些是违规求助? 4723716
关于积分的说明 14975757
捐赠科研通 4789049
什么是DOI,文献DOI怎么找? 2557396
邀请新用户注册赠送积分活动 1518110
关于科研通互助平台的介绍 1478700