概率预测
概率逻辑
梯度升压
集合预报
Boosting(机器学习)
分位数
分位数回归
概率分布
随机森林
计算机科学
计量经济学
数学
统计
人工智能
作者
Gábor Nagy,Gergő Barta,Sándor Kazi,Gyula Borbély,Gábor Simon
标识
DOI:10.1016/j.ijforecast.2015.11.013
摘要
We investigate the probabilistic forecasting of solar and wind power generation in connection with the Global Energy Forecasting Competition 2014. We use a voted ensemble of a quantile regression forest model and a stacked random forest–gradient boosting decision tree model to predict the probability distribution. The raw probabilities thus obtained need to be post-processed using isotonic regression in order to conform to the monotonic-increase attribute of probability distributions. The results show a great performance in terms of the weighted pinball loss, with the model achieving second place on the final competition leaderboard.
科研通智能强力驱动
Strongly Powered by AbleSci AI