Survey on Aspect-Level Sentiment Analysis

情绪分析 计算机科学 骨料(复合) 领域(数学) 标准化 数据科学 情报检索 数据挖掘 人工智能 数学 操作系统 复合材料 材料科学 纯数学
作者
Kim Schouten,Flavius Frăsincar
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:28 (3): 813-830 被引量:731
标识
DOI:10.1109/tkde.2015.2485209
摘要

The field of sentiment analysis, in which sentiment is gathered, analyzed, and aggregated from text, has seen a lot of attention in the last few years. The corresponding growth of the field has resulted in the emergence of various subareas, each addressing a different level of analysis or research question. This survey focuses on aspect-level sentiment analysis, where the goal is to find and aggregate sentiment on entities mentioned within documents or aspects of them. An in-depth overview of the current state-of-the-art is given, showing the tremendous progress that has already been made in finding both the target, which can be an entity as such, or some aspect of it, and the corresponding sentiment. Aspect-level sentiment analysis yields very fine-grained sentiment information which can be useful for applications in various domains. Current solutions are categorized based on whether they provide a method for aspect detection, sentiment analysis, or both. Furthermore, a breakdown based on the type of algorithm used is provided. For each discussed study, the reported performance is included. To facilitate the quantitative evaluation of the various proposed methods, a call is made for the standardization of the evaluation methodology that includes the use of shared data sets. Semanticallyrich concept-centric aspect-level sentiment analysis is discussed and identified as one of the most promising future research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新的初雪完成签到 ,获得积分10
刚刚
英俊的铭应助稳重向南采纳,获得10
1秒前
wanci应助markerfxq采纳,获得10
3秒前
Sun完成签到,获得积分10
3秒前
自由的鱼完成签到,获得积分20
4秒前
松松完成签到 ,获得积分10
4秒前
烟花应助AHA采纳,获得20
5秒前
5秒前
专注寻菱发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
ding应助宁静致远采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
markerfxq发布了新的文献求助10
16秒前
Axel完成签到,获得积分10
18秒前
ee发布了新的文献求助10
19秒前
小马甲应助zxx采纳,获得50
21秒前
22秒前
22秒前
小蘑菇应助hahaha采纳,获得10
23秒前
Ava应助自觉南风采纳,获得10
26秒前
Akim应助文章多多采纳,获得10
26秒前
宁静致远发布了新的文献求助10
27秒前
hsyh发布了新的文献求助10
27秒前
喜欢秋天xx_y应助风轩轩采纳,获得10
28秒前
华仔应助kevin采纳,获得10
31秒前
行则将至完成签到 ,获得积分10
33秒前
33秒前
35秒前
彭于晏应助ZZzzz采纳,获得10
35秒前
Sylvia发布了新的文献求助10
39秒前
自觉南风发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
40秒前
行则将至关注了科研通微信公众号
40秒前
aldehyde应助沟通亿心采纳,获得100
40秒前
41秒前
CipherSage应助守望日出采纳,获得10
43秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881233
求助须知:如何正确求助?哪些是违规求助? 3423660
关于积分的说明 10735222
捐赠科研通 3148649
什么是DOI,文献DOI怎么找? 1737230
邀请新用户注册赠送积分活动 838779
科研通“疑难数据库(出版商)”最低求助积分说明 784058