材料科学
热导率
钽
氮化钽
铜
氮化物
亚稳态
声子
声子散射
散射
凝聚态物理
宽禁带半导体
带隙
非弹性散射
光电子学
金属
热的
电导率
电阻率和电导率
半导体
联轴节(管道)
氮化镓
热传导
光子学
作者
Suixuan Li,Chuanjin Su,Zihao Qin,Ahmet Alatas,M. Kunz,T. Yamada,S. D. Kelly,M. H. Upton,Anthony J. Gironda,Jiyong Zhao,Bora Kalkan,Wanli Yang,Toshihiro Aoki,Yuntao Hu
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2026-01-15
标识
DOI:10.1126/science.aeb1142
摘要
Efficient heat dissipation is fundamentally limited by intrinsic scattering mechanisms that cap the thermal conductivity of metallic materials such as copper to ~ 400 Watts per meter Kelvin. Here we report the experimental realization of single-crystalline θ-phase tantalum nitride (θ-TaN), a metastable transition metal nitride predicted to overcome this limitation. We measure a room-temperature thermal conductivity of ~1100 Watts per meter Kelvin, nearly three times that of copper. Synchrotron-based inelastic x-ray scattering reveals a distinctive phonon band structure with a large acoustic–optical gap and phonon bunching, which suppress phonon–phonon scattering. Ultrafast optical spectroscopy confirms exceptionally weak electron–phonon coupling and validates first-principles calculations. These findings redefine the thermal transport limits of metallic materials and open new opportunities for advancing thermal management in electronics and power systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI