Unbalanced breast cancer data classification using novel fitness functions in genetic programming

适应度函数 计算机科学 遗传程序设计 乳腺癌 人工智能 机器学习 F1得分 分拆(数论) 公制(单位) 精确性和召回率 交叉验证 试验数据 遗传算法 癌症 医学 数学 内科学 组合数学 经济 程序设计语言 运营管理
作者
Divyaansh Devarriya,Cairo Gulati,Vidhi Mansharamani,Aditi Sakalle,Arpit Bhardwaj
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:140: 112866-112866 被引量:130
标识
DOI:10.1016/j.eswa.2019.112866
摘要

Breast Cancer is a common disease and to prevent it, the disease must be identified at earlier stages. Available breast cancer datasets are unbalanced in nature, i.e. there are more instances of benign (non-cancerous) cases then malignant (cancerous) ones. Therefore, it is a challenging task for most machine learning (ML) models to classify between benign and malignant cases properly, even though they have high accuracy. Accuracy is not a good metric to assess the results of ML models on breast cancer dataset because of biased results. To address this issue, we use Genetic Programming (GP) and propose two fitness functions. First one is F2 score which focuses on learning more about the minority class, which contains more relevant information, the second one is a novel fitness function known as Distance score (D score) which learns about both the classes by giving them equal importance and being unbiased. The GP framework in which we implemented D score is named as D-score GP (DGP) and the framework implemented with F2 score is named as F2GP. The proposed F2GP achieved a maximum accuracy of 99.63%, 99.51% and 100% for 60-40, 70-30 partition schemes and 10 fold cross validation scheme respectively and DGP achieves a maximum accuracy of 99.63%, 98.5% and 100% in 60-40, 70-30 partition schemes and 10 fold cross validation scheme respectively. The proposed models also achieves a recall of 100% for all the test cases. This shows that using a new fitness function for unbalanced data classification improves the performance of a classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茉莉完成签到,获得积分20
1秒前
orixero应助巴拉巴拉采纳,获得10
1秒前
灯下雪灬完成签到,获得积分20
1秒前
活泼的断秋完成签到 ,获得积分10
1秒前
清浅发布了新的文献求助10
2秒前
科研通AI2S应助山东及时雨采纳,获得10
2秒前
zhengyf发布了新的文献求助10
2秒前
lizhiqian2024发布了新的文献求助10
2秒前
666发布了新的文献求助10
3秒前
1111发布了新的文献求助30
3秒前
默默的冷亦关注了科研通微信公众号
3秒前
3秒前
可靠的薯片完成签到,获得积分10
4秒前
华仔应助板栗采纳,获得10
4秒前
小二郎应助江颖芋采纳,获得10
4秒前
悟空发布了新的文献求助10
5秒前
充电宝应助BaoCullen采纳,获得10
5秒前
小马甲应助微笑老太采纳,获得10
5秒前
杨德帅发布了新的文献求助10
5秒前
徐笑松发布了新的文献求助10
6秒前
爆米花应助Huang采纳,获得10
6秒前
7秒前
夏天完成签到,获得积分10
7秒前
7秒前
共享精神应助笑点低静柏采纳,获得10
8秒前
蓝莓芝士完成签到 ,获得积分10
9秒前
HanZhang发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
万能图书馆应助hyq采纳,获得10
10秒前
10秒前
昵称发布了新的文献求助10
11秒前
彭于晏应助康德采纳,获得30
11秒前
11秒前
xzm完成签到,获得积分10
11秒前
12秒前
慕青应助陶醉白梅采纳,获得10
12秒前
君衡完成签到 ,获得积分10
13秒前
sdss发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667386
求助须知:如何正确求助?哪些是违规求助? 4885345
关于积分的说明 15119791
捐赠科研通 4826177
什么是DOI,文献DOI怎么找? 2583805
邀请新用户注册赠送积分活动 1537947
关于科研通互助平台的介绍 1496059