数学
共轭先验
估计员
正态分布
反伽马分布
伽马分布
统计
反向
逆高斯分布
应用数学
贝叶斯定理
分布(数学)
数学分析
正态伽马分布
渐近分布
贝叶斯概率
几何学
作者
Ying‐Ying Zhang,Teng‐Zhong Rong,Manman Li
标识
DOI:10.1080/03610926.2018.1465081
摘要
Most of the samples in the real world are from the normal distributions with unknown mean and variance, for which it is common to assume a conjugate normal-inverse-gamma prior. We calculate the empirical Bayes estimators of the mean and variance parameters of the normal distribution with a conjugate normal-inverse-gamma prior by the moment method and the Maximum Likelihood Estimation (MLE) method in two theorems. After that, we illustrate the two theorems for the monthly simple returns of the Shanghai Stock Exchange Composite Index.
科研通智能强力驱动
Strongly Powered by AbleSci AI