Constant dripping wears away a stone: Fatigue damage causing particles' cracking

开裂 常量(计算机编程) 法律工程学 材料科学 复合材料 工程类 计算机科学 程序设计语言
作者
Ze Ren,Xianhui Zhang,Meng Li,Jingjing Zhou,Sheng Sun,Haibing He,Deyu Wang
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:416: 104-110 被引量:38
标识
DOI:10.1016/j.jpowsour.2019.01.084
摘要

Abstract Once Li+ ions start mobilizing, the crystalline active particles will persistently endure the internal stresses, which originate from the lattice deformation and will remain until reaching a new equilibrium state. While it is still lack of the fundamental understanding on this effect although the particle cracking has been accepted as a failure mode. Here we demonstrate the degradation of particles' mechanical properties and their influence on cathodes' electrochemical performances with a commercial ∼4 μm LiNi1/3Co1/3Mn1/3O2 single-crystals as the sample materials to simplify the model. As Li+ ions reciprocating, the particle strains induce the generation of the line dislocations and accordingly the aggrandization of these bulky defects, and then eventually lacerate the particles mainly along the (110) plane, which is the cleavage plane for the layer oxides. In the selected tested points, the particle cracking is always accompanied with the inflexion of cyclic stability. Obviously, the crystalline’ fracture-strength is gradually fatigued in every cycle, and eventually can't sustain the internal stress to result in the particle cracking and cyclic-stability plummet, similar to ‘constant dripping wears away a stone’. Our approaches demonstrate that the crystalline active materials are suitable to the fracture-damage model, which is another principle for predicting the maximum of LIB's operational life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助甜美的成败采纳,获得10
2秒前
2秒前
3秒前
一蓑烟雨任平生完成签到,获得积分0
4秒前
小杨完成签到,获得积分10
5秒前
6秒前
灵巧的香氛完成签到,获得积分20
8秒前
jaslek发布了新的文献求助10
8秒前
VirSnorlax完成签到,获得积分10
8秒前
小小猪完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
zgnb发布了新的文献求助10
10秒前
11秒前
英姑应助jaslek采纳,获得10
12秒前
研友_VZG7GZ应助阿飞采纳,获得10
14秒前
美有姬完成签到,获得积分10
14秒前
ww发布了新的文献求助10
15秒前
思源应助Gary采纳,获得10
15秒前
XIAOLI应助一澜透采纳,获得10
16秒前
xq完成签到 ,获得积分10
16秒前
17秒前
JamesPei应助zhy采纳,获得10
17秒前
wanci应助songlf23采纳,获得10
17秒前
着急的小蘑菇完成签到,获得积分10
18秒前
科研通AI5应助zgnb采纳,获得10
21秒前
隐形曼青应助和谐的敏采纳,获得10
21秒前
深竹月发布了新的文献求助10
22秒前
22秒前
22秒前
8R60d8应助xxk采纳,获得10
23秒前
NexusExplorer应助嗯哼采纳,获得10
24秒前
养只缅因发布了新的文献求助10
24秒前
25秒前
上官若男应助ww采纳,获得10
25秒前
songlf23发布了新的文献求助10
26秒前
赘婿应助奋斗夏烟采纳,获得10
27秒前
张宇琪发布了新的文献求助10
29秒前
科研小哥发布了新的文献求助10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149