Knowledge modeling via contextualized representations for LSTM-based personalized exercise recommendation

个性化 计算机科学 追踪 任务(项目管理) 贝叶斯网络 多样性(控制论) 代表(政治) 推荐系统 人工智能 动态贝叶斯网络 个性化学习 机器学习 情报检索 万维网 教学方法 合作学习 经济 开放式学习 管理 法学 操作系统 政治 政治学
作者
Yujia Huo,Derek F. Wong,Lionel M. Ni,Lidia S. Chao,Jing Zhang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:523: 266-278 被引量:67
标识
DOI:10.1016/j.ins.2020.03.014
摘要

Intelligent education systems have enabled personalized learning (PL). In PL, students are presented with educational contents that are consistent with their personal knowledge states (KS), and the critical task is accurately estimating these states through data. Knowledge tracing (KT) infers KS (latent) through historical student interactions (observed) with the knowledge components (KCs). A wide variety of KT techniques have been developed, from Bayesian Knowledge Tracing (BKT) to Deep Knowledge Tracing (DKT). However, in most of these methods, the KCs are represented as stand-alone entities, and the effect of representing KCs using contexts such as learning-related factors has been under-investigated. Also, KT needs to generate personalized results to facilitate tasks such as exercise recommendation. In this paper, we propose two approaches that use a contextualized representation of KCs, one with a content-based approach and another with a Long Short Term Memory (LSTM) network plus a personalization mechanism. By performing extensive experiments on two real-world datasets, results show not only a tangible improvement in prediction accuracy in the KT task compared to existing methods, but also its effectiveness in improving the recommendation precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamsli完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
共享精神应助TvT采纳,获得10
1秒前
少年狂完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
侯小叶完成签到 ,获得积分10
2秒前
2秒前
2秒前
狄百招发布了新的文献求助10
3秒前
Bellamie完成签到 ,获得积分20
3秒前
feimengxia完成签到 ,获得积分10
3秒前
qwt发布了新的文献求助10
4秒前
贪玩凡阳发布了新的文献求助30
4秒前
4秒前
ee发布了新的文献求助10
4秒前
隐形曼青应助稳重傲柔采纳,获得10
5秒前
Walder发布了新的文献求助10
5秒前
感谢有你完成签到 ,获得积分10
6秒前
科研通AI5应助gc采纳,获得10
6秒前
6秒前
6秒前
少年狂发布了新的文献求助30
6秒前
7秒前
cdercder应助花花采纳,获得10
7秒前
sunshine应助花花采纳,获得10
7秒前
7秒前
7秒前
浮熙完成签到 ,获得积分10
8秒前
eve完成签到,获得积分20
8秒前
8秒前
wanci应助开心的西瓜采纳,获得10
8秒前
Mark发布了新的文献求助10
9秒前
cl发布了新的文献求助10
9秒前
sugar发布了新的文献求助30
9秒前
维拉帕米完成签到,获得积分10
9秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796116
求助须知:如何正确求助?哪些是违规求助? 3341123
关于积分的说明 10304336
捐赠科研通 3057684
什么是DOI,文献DOI怎么找? 1677795
邀请新用户注册赠送积分活动 805683
科研通“疑难数据库(出版商)”最低求助积分说明 762732