微流控
细胞包封
微技术
自愈水凝胶
纳米技术
材料科学
封装(网络)
组织工程
流动聚焦
微加工
药物输送
化学工程
计算机科学
聚二甲基硅氧烷
纳米颗粒
生物医学工程
工程类
高分子化学
计算机网络
作者
Mohamed G. A. Mohamed,Pranav Ambhorkar,Roya Samanipour,Annie Yang,Ali Ghafoor,Keekyoung Kim
出处
期刊:Biomicrofluidics
[American Institute of Physics]
日期:2020-03-01
卷期号:14 (2)
被引量:38
摘要
Microfluidic principles have been extensively utilized as powerful tools to fabricate controlled monodisperse cell-laden hydrogel microdroplets for various biological applications, especially tissue engineering. In this review, we report recent advances in microfluidic-based droplet fabrication and provide our rationale to justify the superiority of microfluidics-based techniques over other microtechnology methods in achieving the encapsulation of cells within hydrogels. The three main components of such a system—hydrogels, cells, and device configurations—are examined thoroughly. First, the characteristics of various types of hydrogels including natural and synthetic types, especially concerning cell encapsulation, are examined. This is followed by the elucidation of the reasoning behind choosing specific cells for encapsulation. Next, in addition to a detailed discussion of their respective droplet formation mechanisms, various device configurations including T-junctions, flow-focusing, and co-flowing that aid in achieving cell encapsulation are critically reviewed. We then present an outlook on the current applications of cell-laden hydrogel droplets in tissue engineering such as 3D cell culturing, rapid generation and repair of tissues, and their usage as platforms for studying cell–cell and cell–microenvironment interactions. Finally, we shed some light upon the prospects of microfluidics-based production of cell-laden microgels and propose some directions for forthcoming research that can aid in overcoming challenges currently impeding the translation of the technology into clinical success.
科研通智能强力驱动
Strongly Powered by AbleSci AI