Peak Outpatient and Emergency Department Visit Forecasting for Patients With Chronic Respiratory Diseases Using Machine Learning Methods: Retrospective Cohort Study

急诊科 医学 回顾性队列研究 急诊医学 队列 门诊部 医疗急救 呼吸系统 内科学 精神科
作者
Junfeng Peng,Chuan Chen,Mi Ζhou,Xiaohua Xie,Yuqi Zhou,Ching‐Hsing Luo
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:8 (3): e13075-e13075 被引量:23
标识
DOI:10.2196/13075
摘要

Background The overcrowding of hospital outpatient and emergency departments (OEDs) due to chronic respiratory diseases in certain weather or under certain environmental pollution conditions results in the degradation in quality of medical care, and even limits its availability. Objective To help OED managers to schedule medical resource allocation during times of excessive health care demands after short-term fluctuations in air pollution and weather, we employed machine learning (ML) methods to predict the peak OED arrivals of patients with chronic respiratory diseases. Methods In this paper, we first identified 13,218 visits from patients with chronic respiratory diseases to OEDs in hospitals from January 1, 2016, to December 31, 2017. Then, we divided the data into three datasets: weather-based visits, air quality-based visits, and weather air quality-based visits. Finally, we developed ML methods to predict the peak event (peak demand days) of patients with chronic respiratory diseases (eg, asthma, respiratory infection, and chronic obstructive pulmonary disease) visiting OEDs on the three weather data and environmental pollution datasets in Guangzhou, China. Results The adaptive boosting-based neural networks, tree bag, and random forest achieved the biggest receiver operating characteristic area under the curve, 0.698, 0.714, and 0.809, on the air quality dataset, the weather dataset, and weather air quality dataset, respectively. Overall, random forests reached the best classification prediction performance. Conclusions The proposed ML methods may act as a useful tool to adapt medical services in advance by predicting the peak of OED arrivals. Further, the developed ML methods are generic enough to cope with similar medical scenarios, provided that the data is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助风控采纳,获得10
1秒前
1秒前
七瑾发布了新的文献求助10
4秒前
搜集达人应助安详小小采纳,获得10
5秒前
5秒前
Superlau完成签到,获得积分10
6秒前
7秒前
7秒前
所所应助Amorfati采纳,获得10
8秒前
易千妤发布了新的文献求助10
8秒前
风控完成签到,获得积分20
9秒前
阿州应助白勺采纳,获得10
9秒前
传奇3应助yh617采纳,获得10
10秒前
xlb发布了新的文献求助10
11秒前
就打怪兽完成签到 ,获得积分10
12秒前
幻梦发布了新的文献求助10
12秒前
玛卡巴卡发布了新的文献求助10
12秒前
夏xia完成签到,获得积分10
13秒前
领导范儿应助魔法签证1993采纳,获得10
14秒前
星辰大海应助易千妤采纳,获得10
14秒前
16秒前
ma化疼没木完成签到,获得积分10
16秒前
春鸮鸟完成签到 ,获得积分10
16秒前
16秒前
zhuangzhu完成签到,获得积分10
17秒前
Amorfati发布了新的文献求助10
19秒前
哈哈发布了新的文献求助10
20秒前
21秒前
22秒前
24秒前
佟乐发布了新的文献求助10
24秒前
25秒前
mzbgnk发布了新的文献求助10
25秒前
25秒前
123发布了新的文献求助10
25秒前
hh完成签到,获得积分10
25秒前
霸气的香芦应助Amorfati采纳,获得10
26秒前
_ban完成签到 ,获得积分10
26秒前
27秒前
遇简完成签到,获得积分10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133144
求助须知:如何正确求助?哪些是违规求助? 3669973
关于积分的说明 11605085
捐赠科研通 3366574
什么是DOI,文献DOI怎么找? 1849609
邀请新用户注册赠送积分活动 913166
科研通“疑难数据库(出版商)”最低求助积分说明 828499