Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks

MNIST数据库 尖峰神经网络 计算机科学 联营 人工智能 神经形态工程学 机器学习 模式识别(心理学) 人工神经网络 深度学习
作者
Wei Fang,Zhaofei Yu,Yanqi Chen,Timothée Masquelier,Tiejun Huang,Yonghong Tian
标识
DOI:10.1109/iccv48922.2021.00266
摘要

Spiking Neural Networks (SNNs) have attracted enormous research interest due to temporal information processing capability, low power consumption, and high biological plausibility. However, the formulation of efficient and high-performance learning algorithms for SNNs is still challenging. Most existing learning methods learn weights only, and require manual tuning of the membrane-related parameters that determine the dynamics of a single spiking neuron. These parameters are typically chosen to be the same for all neurons, which limits the diversity of neurons and thus the expressiveness of the resulting SNNs. In this paper, we take inspiration from the observation that membrane-related parameters are different across brain regions, and propose a training algorithm that is capable of learning not only the synaptic weights but also the membrane time constants of SNNs. We show that incorporating learnable membrane time constants can make the network less sensitive to initial values and can speed up learning. In addition, we reevaluate the pooling methods in SNNs and find that max-pooling will not lead to significant information loss and have the advantage of low computation cost and binary compatibility. We evaluate the proposed method for image classification tasks on both traditional static MNIST, Fashion-MNIST, CIFAR-10 datasets, and neuromorphic N-MNIST, CIFAR10-DVS, DVS128 Gesture datasets. The experiment results show that the proposed method outperforms the state-of-the-art accuracy on nearly all datasets, using fewer time-steps. Our codes are available at https://github.com/fangwei123456/Parametric-Leaky-Integrate-and-Fire-Spiking-Neuron.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小球同学只爱学习完成签到,获得积分20
刚刚
小巧初露发布了新的文献求助10
1秒前
芜湖起飞完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
毛驴子秋裤完成签到,获得积分20
2秒前
bkagyin应助魔幻的寒风采纳,获得10
2秒前
小吴同志完成签到,获得积分10
3秒前
icarus发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
CipherSage应助滴滴答答采纳,获得10
4秒前
6秒前
lrelia02发布了新的文献求助10
7秒前
小小油应助morena采纳,获得100
7秒前
小蘑菇应助踏实的白羊采纳,获得10
8秒前
allen发布了新的文献求助10
8秒前
ndsiu发布了新的文献求助10
9秒前
顺心向松发布了新的文献求助10
9秒前
科研通AI6应助小可采纳,获得10
9秒前
9秒前
9秒前
我是老大应助张小小采纳,获得10
10秒前
哔哩哔哩完成签到,获得积分10
10秒前
华仔应助AKA采纳,获得10
11秒前
yyzhou应助晟嗡嗡嗡采纳,获得10
12秒前
12秒前
gege发布了新的文献求助10
12秒前
13秒前
shann完成签到,获得积分10
13秒前
13秒前
FashionBoy应助年轻纸飞机采纳,获得10
14秒前
14秒前
xx发布了新的文献求助10
15秒前
lzy发布了新的文献求助30
15秒前
打你的母牛完成签到,获得积分10
15秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Optics of Liquid Crystal Displays, 2nd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615729
求助须知:如何正确求助?哪些是违规求助? 4700413
关于积分的说明 14908377
捐赠科研通 4742923
什么是DOI,文献DOI怎么找? 2548273
邀请新用户注册赠送积分活动 1511846
关于科研通互助平台的介绍 1473837