Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks

MNIST数据库 尖峰神经网络 计算机科学 联营 人工智能 神经形态工程学 机器学习 模式识别(心理学) 人工神经网络 深度学习
作者
Wei Fang,Zhaofei Yu,Yanqi Chen,Timothée Masquelier,Tiejun Huang,Yonghong Tian
标识
DOI:10.1109/iccv48922.2021.00266
摘要

Spiking Neural Networks (SNNs) have attracted enormous research interest due to temporal information processing capability, low power consumption, and high biological plausibility. However, the formulation of efficient and high-performance learning algorithms for SNNs is still challenging. Most existing learning methods learn weights only, and require manual tuning of the membrane-related parameters that determine the dynamics of a single spiking neuron. These parameters are typically chosen to be the same for all neurons, which limits the diversity of neurons and thus the expressiveness of the resulting SNNs. In this paper, we take inspiration from the observation that membrane-related parameters are different across brain regions, and propose a training algorithm that is capable of learning not only the synaptic weights but also the membrane time constants of SNNs. We show that incorporating learnable membrane time constants can make the network less sensitive to initial values and can speed up learning. In addition, we reevaluate the pooling methods in SNNs and find that max-pooling will not lead to significant information loss and have the advantage of low computation cost and binary compatibility. We evaluate the proposed method for image classification tasks on both traditional static MNIST, Fashion-MNIST, CIFAR-10 datasets, and neuromorphic N-MNIST, CIFAR10-DVS, DVS128 Gesture datasets. The experiment results show that the proposed method outperforms the state-of-the-art accuracy on nearly all datasets, using fewer time-steps. Our codes are available at https://github.com/fangwei123456/Parametric-Leaky-Integrate-and-Fire-Spiking-Neuron.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Hello应助欢呼冷亦采纳,获得10
刚刚
1秒前
1秒前
12123浪发布了新的文献求助10
1秒前
坚强金针菇完成签到,获得积分20
1秒前
太清完成签到 ,获得积分10
2秒前
月亮打盹儿完成签到,获得积分10
2秒前
负责的皮卡丘完成签到,获得积分10
2秒前
丘比特应助果粒程采纳,获得10
4秒前
元气马发布了新的文献求助10
4秒前
5秒前
yoouth完成签到,获得积分10
5秒前
WWY发布了新的文献求助10
6秒前
6秒前
科研第一巴图鲁完成签到 ,获得积分10
6秒前
Bambi发布了新的文献求助10
7秒前
英俊的铭应助烟雨江南采纳,获得10
7秒前
大个应助unfraid采纳,获得10
7秒前
阳光的灵竹完成签到,获得积分10
8秒前
酷波er应助Changfh采纳,获得10
9秒前
小小完成签到,获得积分10
9秒前
机灵班应助爱大美采纳,获得10
10秒前
11秒前
小马甲应助秋子david采纳,获得10
11秒前
VV完成签到,获得积分10
11秒前
11秒前
momo发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
星辰大海应助cw采纳,获得10
13秒前
陈烈完成签到,获得积分10
14秒前
ljc完成签到 ,获得积分10
15秒前
Present发布了新的文献求助50
15秒前
15秒前
隐形曼青应助迷路行天采纳,获得10
16秒前
苹果新蕾完成签到,获得积分10
16秒前
小白小白发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445