催化作用
质子交换膜燃料电池
电解质
限制电流
膜
化学工程
氧气
相(物质)
质子输运
质子
氧还原反应
材料科学
化学
纳米技术
生物化学
物理化学
工程类
电化学
有机化学
电极
物理
量子力学
作者
Zipeng Zhao,Md Delowar Hossain,Chunchuan Xu,Zijie Lu,Yi‐Sheng Liu,Shang‐Hsien Hsieh,Ilkeun Lee,Wenpei Gao,Jun Yang,Boris V. Merinov,Xue Wang,Zeyan Liu,Jingxuan Zhou,Zhengtang Luo,Xiaoqing Pan,Francisco Zaera,Jinghua Guo,Xiangfeng Duan,William A. Goddard,Yu Huang
出处
期刊:Matter
[Elsevier BV]
日期:2020-10-21
卷期号:3 (5): 1774-1790
被引量:105
标识
DOI:10.1016/j.matt.2020.09.025
摘要
Despite tremendous progress in catalyst development for rate-limiting cathodic oxygen reduction reaction (ORR), reducing Pt usage while meeting performance requirements in practical proton exchange membrane fuel cells (PEMFCs) remains a challenge. The ORR in PEMFCs occurs at a catalyst–electrolyte–gas three-phase interface. A desirable interface should exhibit highly active and available catalytic sites, as well as allow efficient oxygen and proton feeding to the catalytic sites and timely removal of water to avoid interface flooding. Here, we report the design of a three-phase microenvironment in PEFMCs, showing that carbon surface chemistry can be tuned to modulate its interaction with the ionomers and create favorable transport paths for rapid delivery of both reactants and products. With such an elaborate interfacial design, for the first time we have demonstrated PEMFCs with all key ORR catalyst performance metrics, including mass activity, rated power, and durability, surpassing the US Department of Energy targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI