Optimized HRNet for image semantic segmentation

计算机科学 分割 帕斯卡(单位) 人工智能 编码器 特征(语言学) 卷积(计算机科学) 卷积神经网络 模式识别(心理学) 图像分割 计算机视觉 深度学习 人工神经网络 语言学 哲学 程序设计语言 操作系统
作者
Huisi Wu,Chongxin Liang,Mengshu Liu,Zhenkun Wen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:174: 114532-114532 被引量:23
标识
DOI:10.1016/j.eswa.2020.114532
摘要

With the rapid development of deep learning, image semantic segmentation has made great progress and become a hot topic in scene understanding of computer vision. In this paper, we propose an optimized high-resolution net (HRNet) for image semantic segmentation. Unlike traditional networks usually extract feature maps based on a high-to-low encoder, which may easily loss important shape and boundary details especially for the deeper layers with lower resolutions, our optimized HRNet can maintain high resolution features at all times using a relatively shallow and parallel network structure. To improve the ability of our model in better recognizing the objects with various scales and irregular shapes, we introduce a mixed dilated convolution (MDC) module, which can not only increase the diversity of the receptive fields, but also tackle the “gridding” problem commonly existing in the conventional dilated convolution. By minimizing fine detail lost based on a DUpsample strategy, we further develop a multi-level data-dependent feature aggregation (MDFA) module to enhance the capability of our network in better identifying the fine details especially for the small objects with fuzzy boundaries. We evaluate the optimized HRNet on four different datasets, including Cityscapes, Pascal VOC2012, CamVid and the KITTI. Experimental results validate the effectiveness of our method in improving the accuracy of image semantic segmentation. Comparisons with state-of-the-art methods also verify the advantages of our optimized HRNet in achieving better semantic segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孟古发布了新的文献求助10
1秒前
dongdongguai完成签到,获得积分20
1秒前
1秒前
2秒前
puheshengwu发布了新的文献求助20
2秒前
2秒前
2秒前
3秒前
玄之又玄发布了新的文献求助30
3秒前
3秒前
4秒前
K珑完成签到,获得积分10
4秒前
珍珠奶茶完成签到 ,获得积分10
4秒前
emilybei发布了新的文献求助10
4秒前
Harry发布了新的文献求助10
4秒前
4秒前
张贵虎完成签到 ,获得积分10
5秒前
Liu发布了新的文献求助30
5秒前
5秒前
枯木发布了新的文献求助10
6秒前
美好的鸽子完成签到,获得积分10
6秒前
6秒前
6秒前
JJQ发布了新的文献求助30
6秒前
王子发布了新的文献求助10
7秒前
跳跃凡桃发布了新的文献求助10
7秒前
登山人发布了新的文献求助10
7秒前
慕青应助slow采纳,获得10
7秒前
Hello应助jichao采纳,获得10
8秒前
想去海洋看海完成签到,获得积分10
8秒前
9秒前
仁爱莹完成签到,获得积分10
9秒前
Lelym完成签到,获得积分20
9秒前
含蓄南珍完成签到,获得积分20
10秒前
文光完成签到,获得积分10
10秒前
1234发布了新的文献求助10
10秒前
Owen应助未晚采纳,获得10
10秒前
091完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789101
求助须知:如何正确求助?哪些是违规求助? 3334213
关于积分的说明 10267996
捐赠科研通 3050485
什么是DOI,文献DOI怎么找? 1674041
邀请新用户注册赠送积分活动 802435
科研通“疑难数据库(出版商)”最低求助积分说明 760607