Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm

聚类分析 粒子群优化 计算机科学 k均值聚类 算法 市场细分 数据挖掘 分割 人口 人工智能 数学优化 数学 人口学 营销 社会学 业务
作者
Yue Li,Xiaoquan Chu,Dong Tian,Jianying Feng,Weisong Mu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:113: 107924-107924 被引量:102
标识
DOI:10.1016/j.asoc.2021.107924
摘要

The improvement of enterprise competitiveness depends on the ability to match segmented customers in a competitive market. In this study, we propose a customer segmentation method based on the improved K-means algorithm and the adaptive particle swarm optimization (PSO) algorithm. The current PSO algorithm can easily fall into a local extremum; thus, adaptive learning PSO (ALPSO) is proposed to improve the optimization accuracy. On the basis of the analysis of population-based optimization, the inertia weight, learning factors, and the position update method are redesigned. To prevent the K-means clustering algorithm from depending on initial cluster centres, the ALPSO algorithm is used to optimize the K-means cluster centres (KM-ALPSO). Aimed at the issue of clustering the actual grape-customer consumption mixed dataset, factor analysis is used to extract numerical variables. We then propose a dissimilarity measurement method to cluster the mixed data. We compare ALPSO with several parameter update methods. We also conduct comparative experiments to compare KM-ALPSO on five UCI datasets. Finally, the improved KM-ALPSO (IKM-ALPSO) clustering algorithm is applied in customer segmentation. All results show that the three proposed methods outperform existing models. The experimental results also demonstrate the effectiveness and practicability of IKM-ALPSO for customer segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77pp完成签到,获得积分10
刚刚
Nariy完成签到,获得积分10
刚刚
adcffgg发布了新的文献求助10
刚刚
欣慰的星月完成签到,获得积分10
刚刚
阿源勇闯科研完成签到,获得积分10
刚刚
chuanzhi完成签到,获得积分10
刚刚
乐观的幻悲完成签到,获得积分20
1秒前
1秒前
完美世界应助camell采纳,获得10
2秒前
SciGPT应助大力的忆霜采纳,获得10
2秒前
2秒前
柏林寒冬应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
sanmu完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
charint应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
柏林寒冬应助科研通管家采纳,获得10
2秒前
charint应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
mulidexin2021完成签到,获得积分10
3秒前
Tinsulfides完成签到,获得积分10
3秒前
3秒前
张继成完成签到,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471088
求助须知:如何正确求助?哪些是违规求助? 4573837
关于积分的说明 14341652
捐赠科研通 4501048
什么是DOI,文献DOI怎么找? 2466129
邀请新用户注册赠送积分活动 1454359
关于科研通互助平台的介绍 1428966