Electrical demand aggregation effects on the performance of deep learning-based short-term load forecasting of a residential building

尺寸 可再生能源 计算机科学 平均绝对百分比误差 需求响应 峰值需求 需求预测 样品(材料) 供求关系 计量经济学 豆马勃属 人工神经网络 电力系统 人工智能 环境经济学 运筹学 功率(物理) 电气工程 工程类 经济 微观经济学 艺术 化学 物理 量子力学 视觉艺术 色谱法
作者
Ayas Shaqour,Tetsushi Ono,Aya Hagishima,Hooman Farzaneh
出处
期刊:Energy and AI [Elsevier BV]
卷期号:8: 100141-100141 被引量:43
标识
DOI:10.1016/j.egyai.2022.100141
摘要

Modern power grids face the challenge of increasing renewable energy penetration that is stochastic in nature and calls for accurate demand predictions to provide the optimized power supply. Hence, increasing the self-consumption of renewable energy through demand response in households, local communities, and micro-grids is essential and calls for high demand prediction performance at lower levels of demand aggregations to achieve optimal performance. Although many of the recent studies have investigated both macro and micro scale short-term load forecasting (STLF), a comprehensive investigation on the effects of electrical demand aggregation size on STLF is minimal, especially with large sample sizes, where it is essential for optimal sizing of residential micro-grids, demand response markets, and virtual power plants. Hence, this study comprehensively investigates STLF of five aggregation levels (3, 10, 30, 100, and 479) based on a dataset of 479 residential dwellings in Osaka, Japan, with a sample size of (159, 47, 15, 4, and 1) per level, respectively, and investigates the underlying challenges in lower aggregation forecasting. Five deep learning (DL) methods are utilized for STLF and fine-tuned with extensive methodological sensitivity analysis and a variation of early stopping, where a detailed comparative analysis is developed. The test results reveal that a MAPE of (2.47–3.31%) close to country levels can be achieved on the highest aggregation, and below 10% can be sustained at 30 aggregated dwellings. Furthermore, the deep neural network (DNN) achieved the highest performance, followed by the Bi-directional Gated recurrent unit with fully connected layers (Bi-GRU-FCL), which had close to 15% faster training time and 40% fewer learnable parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助成就小懒虫采纳,获得10
1秒前
852应助爽朗的小王同学采纳,获得10
1秒前
Yan0909发布了新的文献求助10
1秒前
烟花应助luoluo采纳,获得10
1秒前
2秒前
舞涤发布了新的文献求助10
3秒前
开放雨真完成签到,获得积分10
3秒前
3秒前
4秒前
苦学僧发布了新的文献求助10
5秒前
GLORIA完成签到,获得积分10
6秒前
还单身的若完成签到,获得积分10
6秒前
FashionBoy应助鱿鱼苦瓜汤采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
lgf发布了新的文献求助10
7秒前
9秒前
英姑应助抛物线采纳,获得10
10秒前
malistm发布了新的文献求助30
11秒前
茅诗睿发布了新的文献求助10
12秒前
13秒前
万书白发布了新的文献求助10
14秒前
jks完成签到 ,获得积分10
14秒前
雪花完成签到,获得积分20
17秒前
SciGPT应助wwewew采纳,获得10
17秒前
二七发布了新的文献求助10
18秒前
18秒前
pcr163应助哈哈哈采纳,获得60
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
guangwow完成签到,获得积分10
21秒前
深情安青应助栀初采纳,获得10
21秒前
22秒前
善学以致用应助qiuhuajin采纳,获得10
22秒前
23秒前
23秒前
王磊发布了新的文献求助10
24秒前
研友-wbg-LjbQIL完成签到,获得积分10
24秒前
25秒前
4000k完成签到,获得积分10
25秒前
乐乐应助Kawhi采纳,获得10
25秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4292685
求助须知:如何正确求助?哪些是违规求助? 3819384
关于积分的说明 11959621
捐赠科研通 3462774
什么是DOI,文献DOI怎么找? 1899436
邀请新用户注册赠送积分活动 947684
科研通“疑难数据库(出版商)”最低求助积分说明 850398