Hierarchical graph attention network for miRNA-disease association prediction

疾病 小RNA 计算生物学 机制(生物学) 生物标志物 生物 生物信息学 计算机科学
作者
Zhengwei Li,Tangbo Zhong,Deshuang Huang,Zhu-Hong You,Ru Nie
出处
期刊:Molecular Therapy [Elsevier BV]
卷期号:30 (4): 1775-1786 被引量:1
标识
DOI:10.1016/j.ymthe.2022.01.041
摘要

Many biological studies show that the mutation and abnormal expression of microRNAs (miRNAs) could cause a variety of diseases. As an important biomarker for disease diagnosis, miRNA is helpful to understand pathogenesis, and could promote the identification, diagnosis and treatment of diseases. However, the pathogenic mechanism how miRNAs affect these diseases has not been fully understood. Therefore, predicting the potential miRNA-disease associations is of great importance for the development of clinical medicine and drug research. In this study, we proposed a novel deep learning model based on hierarchical graph attention network for predicting miRNA-disease associations (HGANMDA). Firstly, we constructed a miRNA-disease-lncRNA heterogeneous graph based on known miRNA-disease associations, miRNA-lncRNA associations and disease-lncRNA associations. Secondly, the node-layer attention was applied to learn the importance of neighbor nodes based on different meta-paths. Thirdly, the semantic-layer attention was applied to learn the importance of different meta-paths. Finally, a bilinear decoder was employed to reconstruct the connections between miRNAs and diseases. The extensive experimental results indicated that our model achieved good performance and satisfactory results in predicting miRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢陈完成签到 ,获得积分10
刚刚
小超完成签到,获得积分10
1秒前
2秒前
li发布了新的文献求助10
3秒前
桐桐应助PSL采纳,获得10
3秒前
科研通AI2S应助Alex采纳,获得10
4秒前
5秒前
领导范儿应助ju采纳,获得10
7秒前
求求科研完成签到,获得积分10
9秒前
七田皿发布了新的文献求助10
10秒前
11秒前
微笑的巧蕊完成签到 ,获得积分10
12秒前
uupp完成签到,获得积分10
12秒前
Ava应助li采纳,获得10
13秒前
Alex完成签到,获得积分10
14秒前
七田皿完成签到,获得积分10
15秒前
林药师完成签到,获得积分10
16秒前
儒雅沛凝完成签到 ,获得积分10
18秒前
Barton完成签到,获得积分10
19秒前
ju完成签到,获得积分10
20秒前
kangshuai完成签到,获得积分10
21秒前
七月完成签到 ,获得积分10
26秒前
26秒前
wqqq完成签到,获得积分10
27秒前
myj完成签到 ,获得积分10
30秒前
31秒前
cdercder应助Rener采纳,获得30
31秒前
Gluneko完成签到,获得积分10
33秒前
哈哈哈哈完成签到 ,获得积分10
33秒前
34秒前
果粒橙完成签到 ,获得积分10
35秒前
nono1031完成签到 ,获得积分10
36秒前
PSL发布了新的文献求助10
37秒前
小糊涂神完成签到,获得积分10
37秒前
yulian完成签到,获得积分10
38秒前
linlin发布了新的文献求助10
38秒前
没有花活儿完成签到,获得积分10
40秒前
40秒前
光亮面包完成签到 ,获得积分10
43秒前
在水一方应助linlin采纳,获得10
46秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346708
关于积分的说明 10329984
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726