数学
Bregman散度
巴拿赫空间
固定点
单调多边形
变分不等式
伪单调算子
一致凸空间
正多边形
趋同(经济学)
规范(哲学)
迭代法
不动点定理
应用数学
纯数学
离散数学
数学优化
Lp空间
埃伯林-Šmulian定理
数学分析
有限秩算子
算子空间
政治学
几何学
经济
法学
经济增长
作者
Hammed Anuoluwapo Abass,A. A. Mebawondu,Chinedu Izuchukwu,Ojen Kumar Narain
出处
期刊:Fixed Point Theory
[Babes-Bolyai University]
日期:2022-01-02
卷期号:23 (1): 3-20
被引量:3
标识
DOI:10.24193/fpt-ro.2022.1.01
摘要
In this paper, we study split common fixed point problems of Bregman demigeneralized and Bregman quasi-nonexpansive mappings in reflexive Banach spaces.Using the Bregman technique together with a Halpern iterative algorithm, we approximate a solution of split common fixed point problem and sum of two monotone operators in reflexive Banach spaces.We establish a strong convergence result for approximating the solution of the aforementioned problems.It is worth mentioning that the iterative algorithm employ in this article is design in such a way that it does not require prior knowledge of operator norm and we do not employ Fejer monotinicity condition in the strategy of proving our convergence theorem.We apply our result to solve variational inequality and convex minimization problems.The result discuss in this paper extends and complements many related results in literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI