SocialLGN: Light graph convolution network for social recommendation

计算机科学 图形 卷积(计算机科学) 理论计算机科学 社交网络(社会语言学) 人工智能 数学 万维网 社会化媒体 人工神经网络
作者
Jie Liao,Wei Zhou,Fengji Luo,Junhao Wen,Min Gao,Xiuhua Li,Jun Zeng
出处
期刊:Information Sciences [Elsevier BV]
卷期号:589: 595-607 被引量:106
标识
DOI:10.1016/j.ins.2022.01.001
摘要

Graph Neural Networks have been applied in recommender systems to learn the representation of users and items from a user-item graph. In the state-of-the-art, there are two major challenges in applying Graph Neural Networks to social recommendation: (i) how to accurately learn the representation of users and items from the user-item interaction graph and social graph, and (ii) based on the fact that each user is represented simultaneously by the two graphs, how to integrate the user representations learned from these two graphs. Aiming at addressing these challenges, this paper proposes a new social recommendation system called SocialLGN. In SocialLGN, the representation of each user and item is propagated in the user-item interaction graph with light graph convolutional layers; in the meantime, the user’s representation is propagated in the social graph. Based on this, a graph fusion operation is designed to aggregate user representations during propagation. The weighted sum is applied to combine the representations learned by each layer. Comprehensive experiments are conducted on two real-world datasets, and the result shows that the proposed SocialLGN outperforms the SOTA method, especially in handling the cold-start problem. Our PyTorch implemented model is available via https://github.com/leo0481/SocialLGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想想完成签到,获得积分10
刚刚
含糊的画板完成签到,获得积分10
1秒前
Seek完成签到,获得积分10
2秒前
2秒前
Epiphany发布了新的文献求助10
2秒前
杋困了完成签到 ,获得积分10
3秒前
动漫大师发布了新的文献求助10
3秒前
4秒前
ckz完成签到,获得积分10
5秒前
8秒前
小泉完成签到 ,获得积分10
9秒前
DuWilliam发布了新的文献求助10
9秒前
昏睡的蟠桃应助oguricap采纳,获得200
10秒前
1459完成签到,获得积分10
10秒前
科研通AI5应助Daixi_Chen采纳,获得30
11秒前
12秒前
77最可爱完成签到,获得积分10
12秒前
Jasper应助不想看文献采纳,获得10
13秒前
13秒前
wxyinhefeng完成签到 ,获得积分10
13秒前
fosca完成签到,获得积分10
14秒前
快乐的幻波完成签到,获得积分20
14秒前
艾文完成签到,获得积分10
16秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
故酒应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
诸葛御风应助科研通管家采纳,获得20
17秒前
zjw应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
清脆寄容应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
18秒前
HEIKU应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
zjw应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728