Memory-Guided Multi-View Multi-Domain Fake News Detection

计算机科学 领域(数学分析) 分类 符号 情报检索 人工智能 数学 算术 数学分析
作者
Yongchun Zhu,Qiang Sheng,Juan Cao,Qiong Nan,Kai Shu,Minghui Wu,Jindong Wang,Fuzhen Zhuang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:68
标识
DOI:10.1109/tkde.2022.3185151
摘要

The wide spread of fake news is increasingly threatening both individuals and society. Great efforts have been made for automatic fake news detection on a single domain (e.g., politics). However, correlations exist commonly across multiple news domains, and thus it is promising to simultaneously detect fake news of multiple domains. Based on our analysis, we pose two challenges in multi-domain fake news detection: 1) domain shift, caused by the discrepancy among domains in terms of words, emotions, styles, etc. 2) domain labeling incompleteness, stemming from the real-world categorization that only outputs one single domain label, regardless of topic diversity of a news piece. In this paper, we propose a Memory-guided Multi-view Multi-domain Fake News Detection Framework (M$^3$FEND) to address these two challenges. We model news pieces from a multi-view perspective, including semantics, emotion, and style. Specifically, we propose a Domain Memory Bank to enrich domain information which could discover potential domain labels based on seen news pieces and model domain characteristics. Then, with enriched domain information as input, a Domain Adapter could adaptively aggregate discriminative information from multiple views for news in various domains. Extensive offline experiments on English and Chinese datasets demonstrate the effectiveness of M$^3$FEND, and online tests verify its superiority in practice. Our code is available at https://github.com/ICTMCG/M3FEND.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jiangcy完成签到,获得积分10
1秒前
1秒前
Redamancy完成签到,获得积分10
2秒前
Ming Chen完成签到,获得积分10
3秒前
4秒前
Ag666发布了新的文献求助10
4秒前
研友_VZG7GZ应助北北采纳,获得10
4秒前
脑洞疼应助负责冰海采纳,获得10
4秒前
5秒前
skycause完成签到,获得积分10
6秒前
蜜桃乌龙茶完成签到,获得积分10
6秒前
7秒前
星辰大海应助hyhyhyhy采纳,获得10
8秒前
Ava应助何文康采纳,获得10
8秒前
small发布了新的文献求助10
9秒前
10秒前
科研通AI5应助自然的砖头采纳,获得10
11秒前
赵坤煊完成签到 ,获得积分10
11秒前
11秒前
ED应助科研通管家采纳,获得10
12秒前
un发布了新的文献求助10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得20
13秒前
yar应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得50
13秒前
qduxl应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得20
13秒前
情怀应助科研通管家采纳,获得10
13秒前
小白应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
彭于彦祖应助科研通管家采纳,获得20
14秒前
小白应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844554
求助须知:如何正确求助?哪些是违规求助? 3386955
关于积分的说明 10546870
捐赠科研通 3107416
什么是DOI,文献DOI怎么找? 1711821
邀请新用户注册赠送积分活动 824180
科研通“疑难数据库(出版商)”最低求助积分说明 774573