TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 政治 物理 量子力学 法学 政治学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
3秒前
3秒前
3秒前
3秒前
寒食发布了新的文献求助10
5秒前
5秒前
肚皮完成签到 ,获得积分10
6秒前
董羽佳发布了新的文献求助10
8秒前
ccmxigua发布了新的文献求助10
9秒前
ding应助Brunfelsia采纳,获得10
9秒前
小龙先生发布了新的文献求助10
9秒前
南瓜豆腐发布了新的文献求助30
10秒前
激昂的沛柔完成签到,获得积分10
10秒前
咕哒完成签到,获得积分10
11秒前
梵高完成签到,获得积分10
11秒前
酷波er应助Jyouang采纳,获得10
11秒前
12秒前
斯文败类应助爱睡觉采纳,获得10
12秒前
Lu完成签到,获得积分10
13秒前
Fair发布了新的文献求助50
16秒前
16秒前
ysh关注了科研通微信公众号
17秒前
17秒前
18秒前
yiyi131发布了新的文献求助10
20秒前
蘑菇腿发布了新的文献求助10
21秒前
22秒前
Lu发布了新的文献求助10
22秒前
清爽老九发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
搜集达人应助凉默言采纳,获得10
24秒前
铮铮铁骨发布了新的文献求助10
25秒前
儒雅的雁山完成签到 ,获得积分10
26秒前
ysh发布了新的文献求助10
27秒前
28秒前
隐形曼青应助花痴的初柔采纳,获得10
32秒前
32秒前
蘑菇腿完成签到,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051061
求助须知:如何正确求助?哪些是违规求助? 4278621
关于积分的说明 13337056
捐赠科研通 4093748
什么是DOI,文献DOI怎么找? 2240502
邀请新用户注册赠送积分活动 1247091
关于科研通互助平台的介绍 1176104