TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 政治 物理 量子力学 法学 政治学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
111完成签到 ,获得积分10
1秒前
阳光应助小绵羊采纳,获得10
3秒前
Ying发布了新的文献求助20
3秒前
ayan发布了新的文献求助10
4秒前
小二郎应助帆帆帆采纳,获得10
4秒前
谦让碧菡完成签到,获得积分10
4秒前
石榴的二十完成签到 ,获得积分10
6秒前
Rookie应助科研通管家采纳,获得10
6秒前
老福贵儿应助科研通管家采纳,获得10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
饱胀完成签到,获得积分10
7秒前
8秒前
yanchen完成签到,获得积分10
9秒前
希望天下0贩的0应助ayan采纳,获得10
10秒前
Leohp完成签到,获得积分10
10秒前
吴亚运完成签到,获得积分10
12秒前
兴奋小丸子完成签到,获得积分10
12秒前
三杠完成签到 ,获得积分10
13秒前
洁净的天德完成签到,获得积分10
13秒前
13秒前
不着四六的岁月完成签到,获得积分10
13秒前
确幸完成签到,获得积分10
14秒前
MySun完成签到,获得积分10
14秒前
LIGHT完成签到,获得积分10
16秒前
研友_nPb9e8完成签到,获得积分10
17秒前
17秒前
广州东站完成签到,获得积分10
17秒前
Richard发布了新的文献求助30
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
帆帆帆发布了新的文献求助10
19秒前
hero_ljw完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488923
求助须知:如何正确求助?哪些是违规求助? 4587580
关于积分的说明 14414394
捐赠科研通 4519244
什么是DOI,文献DOI怎么找? 2476242
邀请新用户注册赠送积分活动 1461640
关于科研通互助平台的介绍 1434813