Machine learning in the prediction of postpartum depression: A review

概化理论 机器学习 背景(考古学) 人工智能 人口 鉴定(生物学) 医学 萧条(经济学) 产后抑郁症 特征选择 计算机科学 心理学 发展心理学 生物 环境卫生 植物 宏观经济学 古生物学 遗传学 经济 怀孕
作者
Paolo Cellini,Alessandro Pigoni,Giuseppe Delvecchio,Chiara Moltrasio,Paolo Brambilla
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:309: 350-357 被引量:29
标识
DOI:10.1016/j.jad.2022.04.093
摘要

Current screening options in the setting of postpartum depression (PPD) are firmly rooted in self-report symptom-based tools. The implementation of the modern machine learning (ML) approaches might, in this context, represent a way to refine patient screening by precisely identifying possible PPD predictors and, subsequently, a population at risk of developing the disease, in an effort to lower its morbidity, mortality and its economic burden. We performed a bibliographic search on PubMed and Embase looking for studies aimed at the identification of PPD predictors using ML techniques. Among the 482 articles retrieved, 11 met the inclusion criteria. The most used algorithm was the support vector machine. Notably, all studies reached an area under the curve above 0.7, ultimately suggesting that the prediction of PPD could be feasible. Variables obtained from sociodemographic and clinical aspects (psychiatric and gynecological factors) seem to be the most reliable. Only three studies employed biological variables, in the form of blood, genetic and epigenetic predictors, while no study employed imaging techniques. The literature on PPD prediction via ML techniques is currently scarce, with most studies employing different variables selection and ML algorithms, ultimately reducing the generalizability of the results. The identification of a population at risk of developing PPD might be feasible with current technology and clinical knowledge. Further studies are necessary to clarify how such an approach could be implemented into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自己哭哭完成签到 ,获得积分10
1秒前
cooper完成签到 ,获得积分20
1秒前
DDdaisiki发布了新的文献求助10
1秒前
mou完成签到 ,获得积分10
2秒前
你的风筝应助小半采纳,获得10
2秒前
2秒前
3秒前
tunacan完成签到 ,获得积分10
3秒前
喵喵喵发布了新的文献求助10
4秒前
淡淡的雪完成签到,获得积分10
4秒前
4秒前
5秒前
Catalysis123完成签到,获得积分10
5秒前
鄂夏云发布了新的文献求助10
6秒前
欢喜的寒风完成签到,获得积分20
6秒前
6秒前
阿玖完成签到 ,获得积分10
7秒前
小蘑菇应助多久之前采纳,获得10
7秒前
fwz发布了新的文献求助10
7秒前
summer完成签到,获得积分10
7秒前
NexusExplorer应助紫陌采纳,获得10
7秒前
高高的千凡完成签到,获得积分10
7秒前
Lucas应助txy采纳,获得10
7秒前
典雅傲芙完成签到,获得积分20
9秒前
JamesPei应助LJW采纳,获得10
9秒前
10秒前
10秒前
claudiayao完成签到,获得积分10
10秒前
11秒前
11秒前
CQ发布了新的文献求助10
11秒前
XLC发布了新的文献求助10
11秒前
比目鱼发布了新的文献求助10
12秒前
12秒前
gggja完成签到,获得积分10
13秒前
xiao123789完成签到,获得积分10
14秒前
Mister.WangK完成签到,获得积分10
14秒前
Z可完成签到 ,获得积分10
14秒前
灵光一闪发布了新的文献求助10
14秒前
鄂夏云完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3929042
求助须知:如何正确求助?哪些是违规求助? 3473858
关于积分的说明 10980135
捐赠科研通 3203909
什么是DOI,文献DOI怎么找? 1770367
邀请新用户注册赠送积分活动 858441
科研通“疑难数据库(出版商)”最低求助积分说明 796611