The MemSQL query optimizer

计算机科学 查询优化 查询计划 可扩展性 利用 加入 SQL语言 分布式计算 萨尔盖博 数据库 瓶颈 Web搜索查询 情报检索 搜索引擎 程序设计语言 嵌入式系统 计算机安全
作者
Jack Chen,Samir Jindel,Robert Walzer,Rajkumar Sen,Nika Jimsheleishvilli,Michael M. Andrews
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:9 (13): 1401-1412 被引量:48
标识
DOI:10.14778/3007263.3007277
摘要

Real-time analytics on massive datasets has become a very common need in many enterprises. These applications require not only rapid data ingest, but also quick answers to analytical queries operating on the latest data. MemSQL is a distributed SQL database designed to exploit memory-optimized, scale-out architecture to enable real-time transactional and analytical workloads which are fast, highly concurrent, and extremely scalable. Many analytical queries in MemSQL's customer workloads are complex queries involving joins, aggregations, sub-queries, etc. over star and snowflake schemas, often ad-hoc or produced interactively by business intelligence tools. These queries often require latencies of seconds or less, and therefore require the optimizer to not only produce a high quality distributed execution plan, but also produce it fast enough so that optimization time does not become a bottleneck. In this paper, we describe the architecture of the MemSQL Query Optimizer and the design choices and innovations which enable it quickly produce highly efficient execution plans for complex distributed queries. We discuss how query rewrite decisions oblivious of distribution cost can lead to poor distributed execution plans, and argue that to choose high-quality plans in a distributed database, the optimizer needs to be distribution-aware in choosing join plans, applying query rewrites, and costing plans. We discuss methods to make join enumeration faster and more effective, such as a rewrite-based approach to exploit bushy joins in queries involving multiple star schemas without sacrificing optimization time. We demonstrate the effectiveness of the MemSQL optimizer over queries from the TPC-H benchmark and a real customer workload.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助杨朕珺采纳,获得10
1秒前
xiao柒柒柒发布了新的文献求助10
1秒前
spss2005发布了新的文献求助10
2秒前
在水一方应助zuoyou采纳,获得10
2秒前
2秒前
2秒前
3秒前
riverflowing发布了新的文献求助10
3秒前
3秒前
Nana完成签到 ,获得积分10
4秒前
boia发布了新的文献求助20
4秒前
4秒前
克林完成签到,获得积分10
4秒前
www完成签到 ,获得积分10
4秒前
4秒前
周杰伦发布了新的文献求助10
5秒前
5秒前
不得完成签到,获得积分10
6秒前
司空茵茵完成签到,获得积分10
7秒前
大Doctor陈发布了新的文献求助10
7秒前
ding应助洋了个洋采纳,获得30
7秒前
金鱼完成签到,获得积分20
8秒前
碧蓝酬海发布了新的文献求助10
8秒前
瑾蘆发布了新的文献求助30
8秒前
Camellia发布了新的文献求助10
8秒前
9秒前
可爱的函函应助白娟采纳,获得10
9秒前
Xiaoxi679完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
金鱼发布了新的文献求助10
10秒前
Newb1e应助dfg采纳,获得10
10秒前
10秒前
xiexie完成签到,获得积分10
11秒前
11秒前
大个应助riverflowing采纳,获得10
11秒前
成广宇完成签到,获得积分10
11秒前
桐桐应助积极的夏天采纳,获得10
11秒前
zy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Absent Here 200
Methods of optimization 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4347102
求助须知:如何正确求助?哪些是违规求助? 3853369
关于积分的说明 12027445
捐赠科研通 3494972
什么是DOI,文献DOI怎么找? 1917594
邀请新用户注册赠送积分活动 960524
科研通“疑难数据库(出版商)”最低求助积分说明 860357