Structural damage identification of subseabed shield tunnels based on distributed fiber optic sensors and information fusion

曲率 传感器融合 计算机科学 结构工程 失真(音乐) 拉伤 人工智能 工程类 数学 几何学 生物 计算机网络 解剖 放大器 带宽(计算)
作者
Fengyuan Yang,Xin Feng,Jun Zhang,Guo Zhong,Yongbo Yuan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:139: 105215-105215 被引量:11
标识
DOI:10.1016/j.tust.2023.105215
摘要

Subseabed shield tunnels are constantly subjected to erosion induced by seepage and corrosive ions and electrochemical effects of diffuse currents from subway traction locomotives during service, resulting in damage to the outer wall of the segment. However, the outer wall cannot be directly observed, making damage identification a challenge. In this research, an approach based on distributed fiber optic sensors (DFOSs) and information fusion is proposed to solve this issue. To monitor strain, DFOSs were installed along the circumference of the segment inner wall. The strain curvature was adopted to solve the adverse influence of the spatial resolution (SR) averaging effect in DFOSs. Using the strain and strain curvature as information sources, the strain damage probability index (SDPI) and strain curvature damage probability index (SCDPI) were developed. Based on Dempster-Shafer (D-S) evidence theory, the SDPI and SCDPI were further utilized to build basic probability assignment (BPA) functions and perform information fusion for damage identification. To validate the feasibility of this approach, model experiments were conducted. The analysis of the test data indicated that information fusion can suppress the independent features of the two information sources while emphasizing their common features. The SR averaging effect, which can cause data distortion and diminish or even mask the damage anomaly feature in strain, and multiple extrema in the strain curvature that can interfere with damage localization are simultaneously eliminated. The damage identification accuracy is improved, and the damage localization error for the segment outer wall can reach 0.79 cm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情尔芙完成签到 ,获得积分10
1秒前
bugpug完成签到,获得积分10
1秒前
岑晓冰完成签到 ,获得积分10
1秒前
Criminology34应助雅哈采纳,获得10
2秒前
4秒前
7秒前
一帆锋顺发布了新的文献求助10
8秒前
8秒前
ST发布了新的文献求助10
8秒前
七七完成签到 ,获得积分10
9秒前
QL完成签到,获得积分10
10秒前
10秒前
优雅的雁凡完成签到,获得积分10
11秒前
菠菜菜str完成签到,获得积分10
12秒前
深情安青应助ST采纳,获得10
14秒前
xyc完成签到 ,获得积分10
15秒前
李萌萌完成签到 ,获得积分10
15秒前
15秒前
宝哥发布了新的文献求助10
15秒前
33发布了新的文献求助10
16秒前
飘逸金连应助快乐的冰岚采纳,获得10
17秒前
汉堡包应助无解采纳,获得10
18秒前
YIFEI完成签到,获得积分10
18秒前
小二郎应助诸觅双采纳,获得10
18秒前
科研通AI6应助huhdcid采纳,获得30
19秒前
23秒前
没头的大头怪完成签到,获得积分20
25秒前
applelpypies完成签到 ,获得积分0
25秒前
yuyu完成签到,获得积分10
26秒前
27秒前
27秒前
冬雪完成签到 ,获得积分10
27秒前
29秒前
无解发布了新的文献求助10
30秒前
30秒前
烟花应助好好学习采纳,获得10
30秒前
31秒前
一条鱼叫弗里登完成签到 ,获得积分10
31秒前
33秒前
无敌阿东发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284222
求助须知:如何正确求助?哪些是违规求助? 4437791
关于积分的说明 13814979
捐赠科研通 4318770
什么是DOI,文献DOI怎么找? 2370598
邀请新用户注册赠送积分活动 1366003
关于科研通互助平台的介绍 1329460