Development and validation of an interpretable machine learning model for predicting the risk of distant metastasis in papillary thyroid cancer: a multicenter study

医学 甲状腺乳突癌 甲状腺癌 癌症 多中心研究 转移 肿瘤科 医学物理学 内科学 人工智能 随机对照试验 计算机科学
作者
Fei Hou,Yun Zhu,Hongbo Zhao,Haolin Cai,Yinghui Wang,Xiaoqi Peng,Lin Lu,Rongli He,Yan Hou,Zhenhui Li,Ting Chen
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:77: 102913-102913 被引量:1
标识
DOI:10.1016/j.eclinm.2024.102913
摘要

The survival rate of patients with distant metastasis (DM) of papillary thyroid carcinoma (PTC) is significantly reduced. It is of great significance to find an effective method for early prediction of the risk of DM for formulating individualized diagnosis and treatment plans and improving prognosis. Previous studies have significant limitations, and it is still necessary to develop new models for predicting the risk of DM of PTC. We aimed to develop and validate interpretable machine learning (ML) models for early prediction of DM in patients with PTC using a multicenter cohort. We collected data on patients with PTC who were admitted between June 2013 and May 2023. Data from 1430 patients at Yunnan Cancer Hospital (YCH) served as the training and internal validation set, while data from 434 patients at the First Affiliated Hospital of Kunming Medical University (KMU 1st AH) was used as the external test set. Nine ML methods such as random forest (RF) were used to construct the model. Model prediction performance was compared using evaluation indicators such as the area under the receiver operating characteristic curve (AUC). The SHapley Additive exPlanation (SHAP) method was used to rank the feature importance and explain the final model. Among the nine ML models, the RF model performed the best. The RF model accurately predicted the risk of DM in patients with PTC in both the internal validation of the training set [AUC: 0.913, 95% confidence interval (CI) (0.9075-0.9185)] and the external test set [AUC: 0.8996, 95% CI (0.8483-0.9509)]. The calibration curve showed high agreement between the predicted and observed risks. In the sensitivity analysis focusing on DM sites of PTC, the RF model exhibited outstanding performance in predicting "lung-only metastasis" showing high AUC, specificity, sensitivity, F1 score, and a low Brier score. SHAP analysis identified variables that contributed to the model predictions. An online calculator based on the RF model was developed and made available for clinicians at https://predictingdistantmetastasis.shinyapps.io/shiny1/. 11 variables were included in the final RF model: age of the patient with PTC, whether the tumor size is > 2 cm, whether the tumor size is ≤ 1 cm, lymphocyte (LYM) count, monocyte (MONO) count, monocyte/lymphocyte ratio (MLR), thyroglobulin (TG) level, thyroid peroxidase antibody (TPOAb) level, whether the T stage is T1/2, whether the T stage is T3/4, and whether the N stage is N0. On the basis of large-sample and multicenter data, we developed and validated an explainable ML model for predicting the risk of DM in patients with PTC. The model helps clinicians to identify high-risk patients early and provides a basis for individualized patient treatment plans. This work was supported by the National Natural Science Foundation of China (No. 81960426, 82360345 and 82001986), the Outstanding Youth Science Foundation of Yunnan Basic Research Project (No. 202401AY070001-316), Yunnan Province Applied and Basic Research Foundation (No. 202401AT070008), and Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
米香完成签到,获得积分10
3秒前
4秒前
bird完成签到,获得积分20
4秒前
4秒前
yy完成签到 ,获得积分10
5秒前
5秒前
开心白凝发布了新的文献求助10
5秒前
长生完成签到 ,获得积分10
6秒前
8秒前
cst发布了新的文献求助10
8秒前
青橘短衫发布了新的文献求助10
8秒前
Leif应助科研通管家采纳,获得50
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
苹果星星发布了新的文献求助10
9秒前
火星上妙梦完成签到 ,获得积分10
10秒前
瘦瘦的枫叶完成签到 ,获得积分10
13秒前
研友_Y59785应助fangzhang采纳,获得10
13秒前
英姑应助cst采纳,获得10
14秒前
爱学习的太阳完成签到,获得积分20
15秒前
顺利毕业发布了新的文献求助10
15秒前
18秒前
开心白凝完成签到,获得积分10
18秒前
24秒前
Hathaway完成签到,获得积分10
25秒前
Zyl完成签到 ,获得积分10
27秒前
27秒前
28秒前
Jeff完成签到,获得积分10
29秒前
浩然完成签到,获得积分10
29秒前
oligo完成签到 ,获得积分10
33秒前
zikncy发布了新的文献求助10
33秒前
香蕉觅云应助轻松笙采纳,获得10
34秒前
Orange应助somous采纳,获得10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522