清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

40‐4: Improving Visibility Coherence between Auto Macro Inspection and Auto Visual Inspection Using AI Image Translation

能见度 目视检查 翻译(生物学) 计算机视觉 人工智能 计算机科学 连贯性(哲学赌博策略) 数学 光学 统计 生物化学 化学 物理 信使核糖核酸 基因 程序设计语言
作者
Jewoon Woo,Sugwoo Jeong,Seokhyun Yoon
出处
期刊:Sid's Digest Of Technical Papers [Wiley]
卷期号:55 (1): 529-533
标识
DOI:10.1002/sdtp.17576
摘要

In OLED production, the glass fabrication process is prone to frequent occurrences of persistent mura defects, leading to significant damage in the event of defects, as the subsequent final inspection, AVI (Auto Visual Inspection), is time‐consuming. Therefore, there is a need for a consistent inspection. Currently, manual inspection by operators introduces variations in inspection criteria among individuals, resulting in ongoing challenges related to false judgments and post‐process leakage issues The invested automated inspection system for quantitative determination is utilized as a reference only, as the distinction between pseudo‐defects deemed acceptable in AVI and true defects identified as faulty in AVI poses limitations with the traditional logic‐based inspection methods. We enhanced the mura visibility of automatic inspection system (Auto Macro) images through pre‐processing, followed by translation into an image environment similar to AVI images using Pix2pix GAN. Subsequently, we compared the mura index extracted from the processed images with the AVI mura index for evaluation. The Auto Macro images transformed by Pix2pix GAN exhibited similarities with AVI images in terms of overall luminance, gray distribution, and mura visibility intensity. Consequently, the R‐Squared correlation between the mura index of Auto Macro and AVI improved from 0.00 to 0.68. Additionally, defects unrecognized in AVI during Auto Macro inspection were automatically eliminated. False defects in the Auto Macro test that were not recognized in AVI were automatically removed. In this study, we applied the AI model to the Auto Macro inspection system to overcome the limitations of logic‐based inspections. We proposed a method to proactively detect defect‐induced muras before cell‐level processing, aiming to improve yield and reduce incidents of customer leakage accidents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的傲珊完成签到,获得积分10
7秒前
研友_nE1dDn发布了新的文献求助20
23秒前
SciGPT应助研友_nE1dDn采纳,获得10
54秒前
习月阳完成签到,获得积分10
59秒前
zilhua完成签到,获得积分10
1分钟前
1分钟前
李燊发布了新的文献求助10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
烟花应助李燊采纳,获得10
1分钟前
1分钟前
Grace0621发布了新的文献求助10
1分钟前
科研通AI5应助universe_hhy采纳,获得50
1分钟前
sowhat完成签到 ,获得积分10
2分钟前
David完成签到,获得积分10
3分钟前
星辰完成签到 ,获得积分10
3分钟前
下午好完成签到 ,获得积分10
4分钟前
liuliu完成签到,获得积分10
4分钟前
4分钟前
淡定的健柏完成签到 ,获得积分10
5分钟前
几米完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
小曾努力先躺平完成签到,获得积分20
6分钟前
nico发布了新的文献求助10
7分钟前
7分钟前
nico完成签到,获得积分10
8分钟前
生动谷蓝完成签到,获得积分10
8分钟前
Gary完成签到 ,获得积分10
8分钟前
00完成签到 ,获得积分10
9分钟前
kmzzy完成签到,获得积分10
9分钟前
HoHo完成签到 ,获得积分10
9分钟前
笨笨完成签到 ,获得积分10
10分钟前
Arthur完成签到 ,获得积分10
10分钟前
冉亦完成签到,获得积分10
10分钟前
Eid完成签到,获得积分10
10分钟前
Swear完成签到 ,获得积分10
10分钟前
szcyxzh完成签到,获得积分10
11分钟前
Akim应助科研通管家采纳,获得10
11分钟前
12分钟前
钟可可发布了新的文献求助10
12分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830495
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702193
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101