Large Language Model Influence on Diagnostic Reasoning

印为红字的 医学 随机对照试验 梅德林 干预(咨询) 物理疗法 家庭医学 医学物理学 心理学 护理部 病理 政治学 数学教育 法学
作者
Ethan Goh,Robert Gallo,Jason Hom,Eric Strong,Yingjie Weng,Hannah Kerman,Joséphine A. Cool,Zahir Kanjee,Andrew S. Parsons,Neera Ahuja,Eric Horvitz,Daniel X. Yang,Arnold Milstein,Andrew Olson,Adam Rodman,Jonathan H. Chen
出处
期刊:JAMA network open [American Medical Association]
卷期号:7 (10): e2440969-e2440969 被引量:286
标识
DOI:10.1001/jamanetworkopen.2024.40969
摘要

Importance Large language models (LLMs) have shown promise in their performance on both multiple-choice and open-ended medical reasoning examinations, but it remains unknown whether the use of such tools improves physician diagnostic reasoning. Objective To assess the effect of an LLM on physicians’ diagnostic reasoning compared with conventional resources. Design, Setting, and Participants A single-blind randomized clinical trial was conducted from November 29 to December 29, 2023. Using remote video conferencing and in-person participation across multiple academic medical institutions, physicians with training in family medicine, internal medicine, or emergency medicine were recruited. Intervention Participants were randomized to either access the LLM in addition to conventional diagnostic resources or conventional resources only, stratified by career stage. Participants were allocated 60 minutes to review up to 6 clinical vignettes. Main Outcomes and Measures The primary outcome was performance on a standardized rubric of diagnostic performance based on differential diagnosis accuracy, appropriateness of supporting and opposing factors, and next diagnostic evaluation steps, validated and graded via blinded expert consensus. Secondary outcomes included time spent per case (in seconds) and final diagnosis accuracy. All analyses followed the intention-to-treat principle. A secondary exploratory analysis evaluated the standalone performance of the LLM by comparing the primary outcomes between the LLM alone group and the conventional resource group. Results Fifty physicians (26 attendings, 24 residents; median years in practice, 3 [IQR, 2-8]) participated virtually as well as at 1 in-person site. The median diagnostic reasoning score per case was 76% (IQR, 66%-87%) for the LLM group and 74% (IQR, 63%-84%) for the conventional resources-only group, with an adjusted difference of 2 percentage points (95% CI, −4 to 8 percentage points; P = .60). The median time spent per case for the LLM group was 519 (IQR, 371-668) seconds, compared with 565 (IQR, 456-788) seconds for the conventional resources group, with a time difference of −82 (95% CI, −195 to 31; P = .20) seconds. The LLM alone scored 16 percentage points (95% CI, 2-30 percentage points; P = .03) higher than the conventional resources group. Conclusions and Relevance In this trial, the availability of an LLM to physicians as a diagnostic aid did not significantly improve clinical reasoning compared with conventional resources. The LLM alone demonstrated higher performance than both physician groups, indicating the need for technology and workforce development to realize the potential of physician-artificial intelligence collaboration in clinical practice. Trial Registration ClinicalTrials.gov Identifier: NCT06157944
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助XS_QI采纳,获得10
刚刚
2秒前
JiangYifan完成签到 ,获得积分10
2秒前
2秒前
天天发布了新的文献求助30
3秒前
ABCD发布了新的文献求助30
3秒前
JamesPei应助鲜于诗霜采纳,获得10
6秒前
积极问晴发布了新的文献求助10
6秒前
领导范儿应助等待的慕梅采纳,获得10
6秒前
西方末完成签到 ,获得积分10
8秒前
CodeCraft应助时尚嚓茶采纳,获得10
9秒前
15秒前
15秒前
lizishu应助YoungLee采纳,获得10
18秒前
星辰大海应助美琦采纳,获得10
20秒前
ponowang完成签到,获得积分10
21秒前
23秒前
qianqian发布了新的文献求助10
23秒前
25秒前
26秒前
木子发布了新的文献求助10
29秒前
momona完成签到 ,获得积分10
29秒前
qianqian完成签到,获得积分10
30秒前
33秒前
田様应助qianqian采纳,获得10
37秒前
美琦发布了新的文献求助10
38秒前
森源海完成签到,获得积分10
38秒前
宇宙无敌超人完成签到,获得积分10
39秒前
39秒前
脑洞疼应助程昱采纳,获得10
40秒前
asata发布了新的文献求助10
40秒前
光电很亮发布了新的文献求助10
42秒前
符靖苑完成签到 ,获得积分10
42秒前
44秒前
44秒前
44秒前
44秒前
44秒前
44秒前
45秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847541
求助须知:如何正确求助?哪些是违规求助? 6227303
关于积分的说明 15620489
捐赠科研通 4964224
什么是DOI,文献DOI怎么找? 2676489
邀请新用户注册赠送积分活动 1621042
关于科研通互助平台的介绍 1576969