PM 2.5 concentrations based on near-surface visibility in the Northern Hemisphere from 1959 to 2022

能见度 北半球 环境科学 大气科学 气候学 气象学 地质学 物理
作者
Hongfei Hao,Kaicun Wang,Guocan Wu,Jianbao Liu,Jing Li
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:16 (9): 4051-4076 被引量:10
标识
DOI:10.5194/essd-16-4051-2024
摘要

Abstract. Long-term PM2.5 data are essential for the atmospheric environment, human health, and climate change. PM2.5 measurements are sparsely distributed and of short duration. In this study, daily PM2.5 concentrations are estimated using a machine learning method for the period from 1959 to 2022 in the Northern Hemisphere based on near-surface atmospheric visibility. They are extracted from the Integrated Surface Database (ISD). Daily continuous monitored PM2.5 concentration is set as the target, and near-surface atmospheric visibility and other related variables are used as the inputs. A total of 80 % of the samples of each site are the training set, and 20 % are the testing set. The training result shows that the slope of linear regression with a 95 % confidence interval (CI) between the estimated PM2.5 concentration and the monitored PM2.5 concentration is 0.955 [0.955, 0.955], the coefficient of determination (R2) is 0.95, the root mean square error (RMSE) is 7.2 µg m−3, and the mean absolute error (MAE) is 3.2 µg m−3. The test result shows that the slope within a 95 % CI between the predicted PM2.5 concentration and the monitored PM2.5 concentration is 0.864 [0.863, 0.865], the R2 is 0.79, the RMSE is 14.8 µg m−3, and the MAE is 7.6 µg m−3. Compared with a global PM2.5 concentration dataset derived from a satellite aerosol optical depth product with 1 km resolution, the slopes of linear regression on the daily (monthly) scale are 0.817 (0.854) from 2000 to 2021, 0.758 (0.821) from 2000 to 2010, and 0.867 (0.879) from 2011 to 2022, indicating the accuracy of the model and the consistency of the estimated PM2.5 concentration on the temporal scale. The interannual trends and spatial patterns of PM2.5 concentration on the regional scale from 1959 to 2022 are analyzed using a generalized additive mixed model (GAMM), suitable for situations with an uneven spatial distribution of monitoring sites. The trend is the slope of the Theil–Sen estimator. In Canada, the trend is −0.10 µg m−3 per decade, and the PM2.5 concentration exhibits an east–high to west–low pattern. In the United States, the trend is −0.40 µg m−3 per decade, and PM2.5 concentration decreases significantly after 1992, with a trend of −1.39 µg m−3 per decade. The areas of high PM2.5 concentration are in the east and west, and the areas of low PM2.5 concentration are in the central and northern regions. In Europe, the trend is −1.55 µg m−3 per decade. High-concentration areas are distributed in eastern Europe, and the low-concentration areas are in northern and western Europe. In China, the trend is 2.09 µg m−3 per decade. High- concentration areas are distributed in northern China, and the low-concentration areas are distributed in southern China. The trend is 2.65 µg m−3 per decade up to 2011 and −22.23 µg m−3 per decade since 2012. In India, the trend is 0.92 µg m−3 per decade. The concentration exhibits a north–high to south–low pattern, with high-concentration areas distributed in northern India, such as the Ganges Plain and Thar Desert, and the low-concentration area in the Deccan Plateau. The trend is 1.41 µg m−3 per decade up to 2013 and −23.36 µg m−3 per decade from 2014. The variation in regional PM2.5 concentrations is closely related to the implementation of air quality laws and regulations. The daily site-scale PM2.5 concentration dataset from 1959 to 2022 in the Northern Hemisphere is available at the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Atmos.tpdc.301127) (Hao et al., 2024).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
势临发布了新的文献求助10
1秒前
小马甲应助DQ采纳,获得10
2秒前
漫漫完成签到 ,获得积分10
3秒前
林早上完成签到 ,获得积分10
3秒前
liangshujian发布了新的文献求助10
5秒前
momo发布了新的文献求助10
6秒前
天天快乐应助安详岱周采纳,获得10
6秒前
Shrine完成签到,获得积分10
7秒前
11秒前
12秒前
zz完成签到,获得积分10
12秒前
一蓑烟雨任完成签到,获得积分10
15秒前
16秒前
芒果草莓完成签到 ,获得积分20
16秒前
美好储发布了新的文献求助10
17秒前
wow完成签到 ,获得积分10
20秒前
小焦儿完成签到,获得积分10
20秒前
科研通AI6.1应助HM采纳,获得20
20秒前
21秒前
21秒前
嘿嘿应助桑田采纳,获得10
22秒前
今后应助大胆的夏天采纳,获得30
24秒前
老吉完成签到,获得积分10
25秒前
yuke发布了新的文献求助10
26秒前
安详岱周发布了新的文献求助10
26秒前
27秒前
28秒前
29秒前
33秒前
atonnng完成签到,获得积分10
33秒前
33秒前
Isla发布了新的文献求助10
34秒前
星辰大海应助简单千儿采纳,获得10
35秒前
35秒前
安详岱周完成签到,获得积分20
35秒前
搞怪人雄发布了新的文献求助10
38秒前
Hello应助ysxl采纳,获得10
40秒前
酷波er应助YuenYuen采纳,获得10
41秒前
44秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869837
求助须知:如何正确求助?哪些是违规求助? 6456307
关于积分的说明 15662248
捐赠科研通 4985798
什么是DOI,文献DOI怎么找? 2688573
邀请新用户注册赠送积分活动 1630932
关于科研通互助平台的介绍 1589040