PM 2.5 concentrations based on near-surface visibility in the Northern Hemisphere from 1959 to 2022

能见度 北半球 环境科学 大气科学 气候学 气象学 地质学 物理
作者
Hongfei Hao,Kaicun Wang,Guocan Wu,Jianbao Liu,Jing Li
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:16 (9): 4051-4076 被引量:10
标识
DOI:10.5194/essd-16-4051-2024
摘要

Abstract. Long-term PM2.5 data are essential for the atmospheric environment, human health, and climate change. PM2.5 measurements are sparsely distributed and of short duration. In this study, daily PM2.5 concentrations are estimated using a machine learning method for the period from 1959 to 2022 in the Northern Hemisphere based on near-surface atmospheric visibility. They are extracted from the Integrated Surface Database (ISD). Daily continuous monitored PM2.5 concentration is set as the target, and near-surface atmospheric visibility and other related variables are used as the inputs. A total of 80 % of the samples of each site are the training set, and 20 % are the testing set. The training result shows that the slope of linear regression with a 95 % confidence interval (CI) between the estimated PM2.5 concentration and the monitored PM2.5 concentration is 0.955 [0.955, 0.955], the coefficient of determination (R2) is 0.95, the root mean square error (RMSE) is 7.2 µg m−3, and the mean absolute error (MAE) is 3.2 µg m−3. The test result shows that the slope within a 95 % CI between the predicted PM2.5 concentration and the monitored PM2.5 concentration is 0.864 [0.863, 0.865], the R2 is 0.79, the RMSE is 14.8 µg m−3, and the MAE is 7.6 µg m−3. Compared with a global PM2.5 concentration dataset derived from a satellite aerosol optical depth product with 1 km resolution, the slopes of linear regression on the daily (monthly) scale are 0.817 (0.854) from 2000 to 2021, 0.758 (0.821) from 2000 to 2010, and 0.867 (0.879) from 2011 to 2022, indicating the accuracy of the model and the consistency of the estimated PM2.5 concentration on the temporal scale. The interannual trends and spatial patterns of PM2.5 concentration on the regional scale from 1959 to 2022 are analyzed using a generalized additive mixed model (GAMM), suitable for situations with an uneven spatial distribution of monitoring sites. The trend is the slope of the Theil–Sen estimator. In Canada, the trend is −0.10 µg m−3 per decade, and the PM2.5 concentration exhibits an east–high to west–low pattern. In the United States, the trend is −0.40 µg m−3 per decade, and PM2.5 concentration decreases significantly after 1992, with a trend of −1.39 µg m−3 per decade. The areas of high PM2.5 concentration are in the east and west, and the areas of low PM2.5 concentration are in the central and northern regions. In Europe, the trend is −1.55 µg m−3 per decade. High-concentration areas are distributed in eastern Europe, and the low-concentration areas are in northern and western Europe. In China, the trend is 2.09 µg m−3 per decade. High- concentration areas are distributed in northern China, and the low-concentration areas are distributed in southern China. The trend is 2.65 µg m−3 per decade up to 2011 and −22.23 µg m−3 per decade since 2012. In India, the trend is 0.92 µg m−3 per decade. The concentration exhibits a north–high to south–low pattern, with high-concentration areas distributed in northern India, such as the Ganges Plain and Thar Desert, and the low-concentration area in the Deccan Plateau. The trend is 1.41 µg m−3 per decade up to 2013 and −23.36 µg m−3 per decade from 2014. The variation in regional PM2.5 concentrations is closely related to the implementation of air quality laws and regulations. The daily site-scale PM2.5 concentration dataset from 1959 to 2022 in the Northern Hemisphere is available at the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Atmos.tpdc.301127) (Hao et al., 2024).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Davin_ji发布了新的文献求助10
1秒前
怕孤单的棒棒糖完成签到 ,获得积分10
4秒前
昏睡的觅风完成签到 ,获得积分10
8秒前
周周完成签到 ,获得积分10
13秒前
龙行天下完成签到 ,获得积分10
14秒前
忧伤的绍辉完成签到 ,获得积分10
18秒前
drleslie完成签到 ,获得积分10
18秒前
Xu完成签到 ,获得积分10
21秒前
从容的水壶完成签到 ,获得积分10
21秒前
somnus完成签到,获得积分10
21秒前
aiqiangyu发布了新的文献求助10
22秒前
杨中柯完成签到 ,获得积分10
22秒前
云峤完成签到 ,获得积分10
25秒前
隐形荟完成签到 ,获得积分10
28秒前
两天浇一次水完成签到,获得积分10
29秒前
kiu完成签到 ,获得积分10
29秒前
清欢渡Hertz完成签到 ,获得积分10
32秒前
姬鲁宁完成签到 ,获得积分10
39秒前
简单的冬瓜完成签到,获得积分10
39秒前
Research完成签到 ,获得积分10
52秒前
交个朋友完成签到 ,获得积分10
55秒前
动人的诗霜完成签到 ,获得积分10
55秒前
空白完成签到 ,获得积分10
58秒前
kmzzy完成签到,获得积分10
1分钟前
xiang完成签到 ,获得积分0
1分钟前
迷人的焦完成签到 ,获得积分10
1分钟前
不想长大完成签到 ,获得积分0
1分钟前
俏皮的老城完成签到 ,获得积分10
1分钟前
Sofia完成签到 ,获得积分0
1分钟前
one完成签到 ,获得积分10
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
没时间解释了完成签到 ,获得积分10
1分钟前
mike2012完成签到 ,获得积分10
1分钟前
111111完成签到,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
HI完成签到 ,获得积分10
1分钟前
自信完成签到 ,获得积分10
1分钟前
myq完成签到 ,获得积分10
1分钟前
小白完成签到,获得积分10
1分钟前
小王完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866554
求助须知:如何正确求助?哪些是违规求助? 6424175
关于积分的说明 15654583
捐赠科研通 4981465
什么是DOI,文献DOI怎么找? 2686609
邀请新用户注册赠送积分活动 1629439
关于科研通互助平台的介绍 1587455