Machine Learning Enables Reliable Colorimetric Detection of pH and Glucose in Wearable Sweat Sensors

汗水 可穿戴计算机 计算机科学 比色法 化学 计算机视觉 嵌入式系统 医学 内科学
作者
Lijun Zhou,Sidharth S. Menon,Xinqi Li,Miqin Zhang,Mohammad H. Malakooti
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:10 (3) 被引量:12
标识
DOI:10.1002/admt.202401121
摘要

Abstract In healthcare, blood pH and glucose levels are critical indicators, especially for chronic conditions like diabetes. Although taking blood samples is accurate, it is invasive and unaffordable for many. Wearable sensors offer non‐invasive and continuous detection methods, yet face major challenges, such as high cost, inaccuracies, and complex interpretation. Colorimetric wearable sensors integrated with machine learning (ML) are introduced for accurately detecting pH values and glucose concentrations in sweat. These battery‐free and cost‐effective biosensors, made of cotton textiles, are designed to work seamlessly with smartphones for data collection and automated analysis. A new pH indicator is synthesized with enhanced sensitivity and two types of glucose sensors are developed by depositing enzymatic solutions onto cotton substrates. The sensors' performance is assessed using standard solutions with known pH levels ranging from 4 to 10 and glucose concentrations between 0.03 to 1 m m . The photos captured from these sensors are then analyzed by image processing and three different ML algorithms, achieving an accuracy of 90% in pH and glucose detection. These findings provide effective synthesis methods for textile‐based sweat sensors and demonstrate the significance of employing different ML algorithms for their colorimetric analysis, thus eliminating the need for human intervention in the process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘟嘟嘟完成签到,获得积分20
刚刚
李庆林完成签到,获得积分10
刚刚
杨朝辉发布了新的文献求助10
1秒前
1秒前
李庆林发布了新的文献求助10
3秒前
科研狗完成签到 ,获得积分10
3秒前
我是老大应助liang2508采纳,获得10
3秒前
4秒前
4秒前
swallow发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
龙飞凤舞完成签到,获得积分0
7秒前
Alive完成签到,获得积分10
8秒前
8秒前
森水垚发布了新的文献求助10
9秒前
温柔柜子完成签到,获得积分10
10秒前
Anna发布了新的文献求助10
10秒前
科研通AI6应助ywty采纳,获得30
11秒前
11秒前
啊啊啊我不会啊完成签到 ,获得积分10
12秒前
13秒前
oddball三等中士完成签到,获得积分10
13秒前
13秒前
勤恳万宝路完成签到,获得积分10
14秒前
15秒前
kekao完成签到,获得积分10
16秒前
houhou发布了新的文献求助200
17秒前
纳古菌发布了新的文献求助10
17秒前
jeronimo发布了新的文献求助10
18秒前
忧伤的慕梅完成签到 ,获得积分10
18秒前
19秒前
保卫时光完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
丁莞发布了新的文献求助10
21秒前
Frank应助内含子采纳,获得10
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381603
求助须知:如何正确求助?哪些是违规求助? 4504833
关于积分的说明 14019613
捐赠科研通 4414148
什么是DOI,文献DOI怎么找? 2424618
邀请新用户注册赠送积分活动 1417618
关于科研通互助平台的介绍 1395411