Machine Learning Enables Reliable Colorimetric Detection of pH and Glucose in Wearable Sweat Sensors

汗水 可穿戴计算机 计算机科学 比色法 化学 计算机视觉 嵌入式系统 医学 内科学
作者
Lijun Zhou,Sidharth S. Menon,Xinqi Li,Miqin Zhang,Mohammad H. Malakooti
出处
期刊:Advanced materials and technologies [Wiley]
被引量:1
标识
DOI:10.1002/admt.202401121
摘要

Abstract In healthcare, blood pH and glucose levels are critical indicators, especially for chronic conditions like diabetes. Although taking blood samples is accurate, it is invasive and unaffordable for many. Wearable sensors offer non‐invasive and continuous detection methods, yet face major challenges, such as high cost, inaccuracies, and complex interpretation. Colorimetric wearable sensors integrated with machine learning (ML) are introduced for accurately detecting pH values and glucose concentrations in sweat. These battery‐free and cost‐effective biosensors, made of cotton textiles, are designed to work seamlessly with smartphones for data collection and automated analysis. A new pH indicator is synthesized with enhanced sensitivity and two types of glucose sensors are developed by depositing enzymatic solutions onto cotton substrates. The sensors' performance is assessed using standard solutions with known pH levels ranging from 4 to 10 and glucose concentrations between 0.03 to 1 m m . The photos captured from these sensors are then analyzed by image processing and three different ML algorithms, achieving an accuracy of 90% in pH and glucose detection. These findings provide effective synthesis methods for textile‐based sweat sensors and demonstrate the significance of employing different ML algorithms for their colorimetric analysis, thus eliminating the need for human intervention in the process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hathaway完成签到,获得积分10
3秒前
Zyl完成签到 ,获得积分10
5秒前
5秒前
6秒前
Jeff完成签到,获得积分10
7秒前
浩然完成签到,获得积分10
7秒前
oligo完成签到 ,获得积分10
11秒前
zikncy发布了新的文献求助10
11秒前
香蕉觅云应助轻松笙采纳,获得10
12秒前
Orange应助somous采纳,获得10
12秒前
14秒前
感性的寄真完成签到 ,获得积分10
15秒前
17秒前
17秒前
18秒前
领导范儿应助青橘短衫采纳,获得10
18秒前
乐乐应助水的很厉害采纳,获得10
21秒前
21秒前
坚定的海白完成签到 ,获得积分10
22秒前
22秒前
阿南发布了新的文献求助10
22秒前
强健的雅绿完成签到,获得积分10
23秒前
轻松笙发布了新的文献求助10
23秒前
FashionBoy应助Petrichor采纳,获得10
23秒前
23秒前
yu完成签到 ,获得积分10
24秒前
粒子一号完成签到,获得积分10
26秒前
somous发布了新的文献求助10
26秒前
顺利毕业完成签到,获得积分10
28秒前
29秒前
洲洲完成签到 ,获得积分10
30秒前
归尘发布了新的文献求助10
32秒前
32秒前
上官若男应助Ccc采纳,获得10
32秒前
somous完成签到,获得积分10
33秒前
Bin_Liu发布了新的文献求助10
34秒前
cherry bomb完成签到,获得积分10
35秒前
pluto应助坚定的海白采纳,获得20
36秒前
roy_chiang完成签到,获得积分0
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522