Controlling Homophily in Social Network Regression Analysis by Machine Learning

同性恋 计算机科学 回归分析 社会网络分析 机器学习 回归 社交网络(社会语言学) 人工智能 计量经济学 心理学 统计 数学 社会化媒体 社会心理学 万维网
作者
Xuanqi Liu,Ke‐Wei Huang
出处
期刊:Informs Journal on Computing 卷期号:37 (3): 684-702 被引量:3
标识
DOI:10.1287/ijoc.2022.0287
摘要

Across social science disciplines, empirical studies related to social networks have become the most popular research subjects in recent years. A frequently examined topic within these studies is the estimation of peer influence while controlling for homophily effects. However, although researchers may have access to all observable homophily variables, there is scarce literature addressing latent homophily effects stemming from unobservable features. Recent endeavors have demonstrated the efficacy of node embeddings derived from network structure in controlling latent homophily. Inspired by the network embedding research, this study introduces two methods that integrate node embeddings to better control latent homophily, particularly the nonlinear latent homophily effect. The first method uses double machine learning in the partially linear regression literature to alleviate estimation bias. The second method estimates peer influence effects directly by a novel neural network model. Our experimentation results show that our approaches outperform existing estimators in reducing the omitted variable bias due to homophily effects in network regression models. Theoretical analysis of two new estimation methods is also provided in this paper. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This research is supported by the National Research Foundation, Singapore under its Industry Alignment Fund - Pre-positioning (IAF-PP) Funding Initiative [Grant A-0003504-02-00]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0287 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0287 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方yc完成签到,获得积分10
刚刚
枫丶发布了新的文献求助10
刚刚
维拉帕米发布了新的文献求助10
刚刚
qzp发布了新的文献求助10
刚刚
Orange应助星辰采纳,获得10
1秒前
JJ发布了新的文献求助10
1秒前
JJ发布了新的文献求助10
2秒前
JJ发布了新的文献求助10
2秒前
慕青应助冰阔罗采纳,获得10
3秒前
英姑应助默默襄采纳,获得10
3秒前
领导范儿应助张慧慧采纳,获得10
3秒前
Hello应助struggle采纳,获得10
3秒前
领导范儿应助AD采纳,获得10
4秒前
4秒前
Lm发布了新的文献求助10
5秒前
贤惠的雁梅完成签到,获得积分20
5秒前
第二只羽毛完成签到,获得积分10
5秒前
duktig发布了新的文献求助30
5秒前
青年才俊发布了新的文献求助10
6秒前
6秒前
果奶绝甜发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI6应助VIEAAA采纳,获得10
9秒前
科研通AI6应助Ghduaijy采纳,获得10
9秒前
10秒前
11秒前
优美靖柏完成签到,获得积分10
11秒前
阿龙发布了新的文献求助10
12秒前
肖丽婷完成签到,获得积分10
12秒前
13秒前
hbu123完成签到,获得积分10
13秒前
13秒前
共享精神应助肖肖采纳,获得10
13秒前
樱桃发布了新的文献求助10
13秒前
14秒前
星辰完成签到,获得积分10
14秒前
15秒前
15秒前
Akim应助zzz采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480884
求助须知:如何正确求助?哪些是违规求助? 4582012
关于积分的说明 14383148
捐赠科研通 4510631
什么是DOI,文献DOI怎么找? 2471965
邀请新用户注册赠送积分活动 1458286
关于科研通互助平台的介绍 1431972