Continuous model calibration framework for smart-building digital twin: A generative model-based approach

校准 可扩展性 计算机科学 建筑模型 能源消耗 实时计算 控制工程 模拟 工业工程 工程类 统计 数学 数据库 电气工程
作者
Dagimawi D. Eneyew,Miriam A. M. Capretz,Girma Bitsuamlak
出处
期刊:Applied Energy [Elsevier BV]
卷期号:375: 124080-124080
标识
DOI:10.1016/j.apenergy.2024.124080
摘要

Smart building digital twins represent a significant paradigm shift to optimize building operations, thereby reducing their substantial energy consumption and emissions through digitalization. The objective is to virtually replicate existing buildings' static and dynamic aspects, leveraging data, information, and models spanning the entire life cycle. The virtual replica can then be employed for intelligent functions, including real-time monitoring, autonomous control, and proactive decision-making to optimize building operations. To enable proactive decisions, models within the digital twin must continually evolve with changes in the physical building, aligning their outputs with real-time measurements through calibration. This continuous updating requires real-time physical measurements of model inputs. However, challenges arise in the uncertain conditions of buildings marked by sensor absence, malfunctions, and inherent limitations in measuring certain variables. This study introduces a novel calibration framework for physics-based models, addressing the challenges of continuous model calibration in smart-building digital twins while considering the uncertain environment of physical buildings. Within this framework, a novel generative model-based architecture is proposed. This architecture enables a fast and scalable solution while quantifying uncertainty for reliable calibration. Furthermore, a continuous model calibration procedure is presented based on a pre-trained generative calibrator model. A comprehensive evaluation was conducted via a case study employing a building energy model and multiple experiments. The experimental results demonstrated that the proposed framework effectively addresses the challenges of continuous model calibration in smart-building digital twins. The calibrator model accurately quantified uncertainties in its predictions and solved a single calibration problem in an average time of 0.043 second. For facility-level electricity consumption, Coefficient of Variation Root Mean Squared Error (CVRMSE) values of 6.33%, 10.18%, and 10.97% were achieved under conditions of observations without noise or missing data, with noise, and with noise and missing data, respectively. Similarly, for facility-level gas consumption, the corresponding values were 18.75%, 20.53%, and 20.7%. The CVRMSE scores in both cases met the standard hourly thresholds for building energy model calibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助务实的听筠采纳,获得10
刚刚
103921wjk发布了新的文献求助10
1秒前
feng完成签到,获得积分10
5秒前
5秒前
CodeCraft应助zhangzhang采纳,获得10
6秒前
will214发布了新的文献求助10
6秒前
西门子云完成签到,获得积分10
9秒前
hucchongzi应助Arvilzzz采纳,获得10
10秒前
10秒前
xiaojingbao发布了新的文献求助10
10秒前
xingmeng发布了新的文献求助10
11秒前
ccccchen完成签到,获得积分10
13秒前
will214完成签到,获得积分10
14秒前
16秒前
16秒前
854fycchjh完成签到,获得积分10
17秒前
20秒前
科研通AI5应助xiaojingbao采纳,获得10
22秒前
23秒前
派大星和海绵宝宝完成签到,获得积分10
25秒前
蛋挞蛋挞发布了新的文献求助10
25秒前
闪闪雅阳发布了新的文献求助10
27秒前
christina完成签到 ,获得积分10
28秒前
酷波er应助清新的音响采纳,获得10
30秒前
芝诺的乌龟完成签到 ,获得积分0
31秒前
小二郎应助likex采纳,获得10
31秒前
研友_V8Qmr8完成签到,获得积分10
31秒前
sdfwsdfsd完成签到,获得积分10
32秒前
33秒前
sin_Lee完成签到,获得积分10
35秒前
35秒前
生椰拿铁完成签到 ,获得积分10
36秒前
传奇3应助w934420513采纳,获得30
36秒前
36秒前
兔兔酱完成签到,获得积分10
37秒前
小陆完成签到 ,获得积分10
38秒前
会飞的鱼完成签到,获得积分10
39秒前
颜陌发布了新的文献求助10
39秒前
TAKI发布了新的文献求助10
40秒前
研友_Z30GJ8发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366