A transfer learning method in press hardening surrogate modeling: From simulations to real-world

学习迁移 硬化(计算) 计算机科学 工程类 人工智能 材料科学 纳米技术 图层(电子)
作者
Albert Abio,Francesc Bonada,Eduard Garcia-Llamas,Marc Grané,Nuria Nievas,Danillo Lange,Jaume Pujante,Oriol Pujol
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:77: 320-340 被引量:2
标识
DOI:10.1016/j.jmsy.2024.09.012
摘要

The introduction of data-driven surrogate models is a powerful solution to obtain a representation of a manufacturing system, overcoming the limitations of finite element simulations regarding complexity and time. Usually, data acquisition in real manufacturing plants is a very expensive task, and finite element simulations are employed to train Machine Learning-based surrogate models. However, the approximations of the finite element models may induce a deviation from reality that is transferred to the surrogate models. This paper proposes a methodology to combine AI-based surrogate modeling and transfer learning to create a trustworthy and efficient surrogate model of a real manufacturing process, using a low-fidelity finite element model as a source. In particular, the methodology has been demonstrated in a study involving press hardening of boron steel sheet in a pilot plant. Two deep neural networks have been trained with low-fidelity ABAQUS simulations, forming a baseline surrogate model that predicts the key outputs of the process. The use of few experimental real data of the process to perform transfer learning and adapt the original baseline surrogate model to the real environment shows remarkable results, surpassing other Variable-Fidelity Modeling approaches. The final transfer learning surrogate model provides fast and good predictions of the most relevant outputs of the real process with little training, and it removes completely the calibration stage or the need of a high-fidelity simulation model. Additionally, the presented methodology can be a trigger for creating efficient virtual manufacturing environments that can enable developing digital twins or reinforcement learning agents for process optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHB完成签到,获得积分10
刚刚
魏海龙完成签到,获得积分10
2秒前
THEO完成签到,获得积分10
2秒前
moji完成签到,获得积分10
2秒前
c123完成签到 ,获得积分10
2秒前
顾守完成签到,获得积分10
3秒前
科研通AI6.1应助ichi采纳,获得10
3秒前
4秒前
lindahappy完成签到,获得积分10
6秒前
6秒前
Joshua完成签到,获得积分10
7秒前
朵朵与青柠完成签到,获得积分10
7秒前
姬鲁宁完成签到 ,获得积分10
8秒前
9秒前
Ayaka完成签到,获得积分10
10秒前
七里香完成签到 ,获得积分10
10秒前
zqy完成签到,获得积分10
10秒前
11秒前
11秒前
哈哈哈发布了新的文献求助10
11秒前
大气乐儿完成签到,获得积分10
11秒前
帅玉玉发布了新的文献求助10
12秒前
lindahappy发布了新的文献求助10
12秒前
12秒前
ZYK关闭了ZYK文献求助
13秒前
祖f完成签到,获得积分10
14秒前
李小羊完成签到,获得积分10
15秒前
cc发布了新的文献求助10
16秒前
16秒前
17秒前
huan完成签到,获得积分10
17秒前
18秒前
ichi发布了新的文献求助10
18秒前
1234完成签到 ,获得积分10
19秒前
20秒前
情怀应助敏感的代玉采纳,获得10
20秒前
caffeine完成签到,获得积分10
20秒前
21秒前
一二发布了新的文献求助10
22秒前
pyx完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733316
求助须知:如何正确求助?哪些是违规求助? 5348056
关于积分的说明 15323627
捐赠科研通 4878442
什么是DOI,文献DOI怎么找? 2621232
邀请新用户注册赠送积分活动 1570332
关于科研通互助平台的介绍 1527252