LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning

奥林匹克运动会 成对比较 浆果 计算机科学 数学 数学优化 人工智能 数学教育 生物 植物
作者
Di Zhang,Jianbo Wu,Jingdi Lei,Tong Che,Jiatong Li,Xie Tong,Xiaoshui Huang,Shufei Zhang,Marco Pavone,Yuqiang Li,Wanli Ouyang,D.C. Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.02884
摘要

This paper presents an advanced mathematical problem-solving framework, LLaMA-Berry, for enhancing the mathematical reasoning ability of Large Language Models (LLMs). The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critic and rewriting capabilities of LLMs, Self-Refine applied to MCTS (SR-MCTS) overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms by fostering a more efficient exploration of solution spaces. Pairwise Preference Reward Model~(PPRM), inspired by Reinforcement Learning from Human Feedback (RLHF), is then used to model pairwise preferences between solutions, utilizing an Enhanced Borda Count (EBC) method to synthesize these preferences into a global ranking score to find better answers. This approach addresses the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability compared to existing methods like ToT and rStar, particularly in complex Olympiad-level benchmarks, including GPQA, AIME24 and AMC23.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koro发布了新的文献求助10
1秒前
科研通AI5应助qtedd采纳,获得10
1秒前
田様应助TIWOSS采纳,获得10
2秒前
2秒前
3秒前
犇骉发布了新的文献求助10
4秒前
luckily完成签到 ,获得积分20
4秒前
5秒前
zh发布了新的文献求助10
6秒前
wdw2501完成签到 ,获得积分20
8秒前
8秒前
9秒前
jenningseastera应助张弘采纳,获得10
9秒前
9秒前
10秒前
NexusExplorer应助midoli采纳,获得10
10秒前
细心蚂蚁发布了新的文献求助10
12秒前
称心曼安发布了新的文献求助10
12秒前
luckily发布了新的文献求助10
14秒前
儒雅沛文发布了新的文献求助10
15秒前
整齐星月发布了新的文献求助10
17秒前
17秒前
17秒前
思源应助nfsq采纳,获得10
17秒前
Jasper应助gsp采纳,获得10
18秒前
小智多星完成签到 ,获得积分10
19秒前
凌风完成签到,获得积分10
19秒前
19秒前
21秒前
TIWOSS发布了新的文献求助10
21秒前
科研通AI5应助么么采纳,获得10
21秒前
居蓝完成签到 ,获得积分10
22秒前
沉默的凝云完成签到,获得积分20
22秒前
25秒前
zhaoxiao完成签到 ,获得积分10
28秒前
日尧完成签到,获得积分10
28秒前
28秒前
29秒前
CodeCraft应助细心蚂蚁采纳,获得10
30秒前
汉堡包应助TIWOSS采纳,获得10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800658
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328098
捐赠科研通 3062460
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627