Straggler-Aware Federated Learning Based on Adaptive Clustering to Support Edge Intelligence

计算机科学 聚类分析 GSM演进的增强数据速率 人工智能
作者
Yi‐Jing Liu,Gang Feng,Hongyang Du,Zheng Qin,Yao Sun,Jiawen Kang,Dusit Niyato
标识
DOI:10.1109/icc51166.2024.10623049
摘要

Federated learning (FL) has been vigorously promoted in wireless edge networks as it fosters collaborative training of machine learning (ML) models while preserving individual user privacy and data security. In conventional FL, user equipments (UEs) and an aggregator can collaboratively train a globally shared ML model by transmitting ML models instead of raw data. In wireless edge networks, the heterogeneity of multidimensional resources (e.g., computing and communication re-sources) used to transmit ML models may introduce stragglers in FL, characterized by a slow update and/or transmission of local models. The stragglers in FL can significantly degrade learning efficiency and accuracy, as the slowest UE participating in the FL can dramatically slow down entire convergence. In this paper, to alleviate the negative impact of stragglers, we propose a dynamic straggler-aware clustering based FL mechanism, called FeDSC, via adaptive UE clustering. Specifically, we first group participating UEs into multiple clusters based on their computing capability and available wireless resources. Then, we propose an adaptive UE selection scheme to synchronously update the cluster aggregation model. Meanwhile, an edge server performs global aggregation of different cluster models in an asynchronous time-triggered manner. Numerical results show that our proposed FeDSC mechanism can achieve significant performance improvement in terms of training time and model accuracy in comparison to classical FL benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助50
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
左右发布了新的文献求助10
1秒前
YJ发布了新的文献求助10
2秒前
4秒前
所所应助xxdn采纳,获得10
4秒前
4秒前
shaylie发布了新的文献求助30
5秒前
xdc发布了新的文献求助10
5秒前
6秒前
6秒前
宗岩完成签到 ,获得积分10
6秒前
T_KYG完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
傻芙芙的发布了新的文献求助30
9秒前
9秒前
ww发布了新的文献求助10
10秒前
10秒前
小蘑菇应助加纳采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
NexusExplorer应助xdc采纳,获得10
12秒前
YJ完成签到,获得积分10
12秒前
12秒前
战斗暴龙兽完成签到,获得积分10
13秒前
忧郁难胜发布了新的文献求助10
13秒前
13秒前
13秒前
xxdn发布了新的文献求助10
14秒前
细心觅风完成签到,获得积分10
14秒前
15秒前
jouholly发布了新的文献求助20
16秒前
xxhh33发布了新的文献求助10
16秒前
Jasper应助桃桃采纳,获得10
16秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769838
求助须知:如何正确求助?哪些是违规求助? 5581810
关于积分的说明 15422799
捐赠科研通 4903452
什么是DOI,文献DOI怎么找? 2638206
邀请新用户注册赠送积分活动 1586102
关于科研通互助平台的介绍 1541215