亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Transformer Geometric Learning of Brain Networks Using Multimodal MR Images for Brain Age Estimation

计算机科学 人工智能 变压器 计算机视觉 模式识别(心理学) 图形 理论计算机科学 工程类 电气工程 电压
作者
Hongjie Cai,Yue Gao,Manhua Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 456-466 被引量:70
标识
DOI:10.1109/tmi.2022.3222093
摘要

Brain age is considered as an important biomarker for detecting aging-related diseases such as Alzheimer's Disease (AD). Magnetic resonance imaging (MRI) have been widely investigated with deep neural networks for brain age estimation. However, most existing methods cannot make full use of multimodal MRIs due to the difference in data structure. In this paper, we propose a graph transformer geometric learning framework to model the multimodal brain network constructed by structural MRI (sMRI) and diffusion tensor imaging (DTI) for brain age estimation. First, we build a two-stream convolutional autoencoder to learn the latent representations for each imaging modality. The brain template with prior knowledge is utilized to calculate the features from the regions of interest (ROIs). Then, a multi-level construction of the brain network is proposed to establish the hybrid ROI connections in space, feature and modality. Next, a graph transformer network is proposed to model the cross-modal interaction and fusion by geometric learning for brain age estimation. Finally, the difference between the estimated age and the chronological age is used as an important biomarker for AD diagnosis. Our method is evaluated with the sMRI and DTI data from UK Biobank and Alzheimer's Disease Neuroimaging Initiative database. Experimental results demonstrate that our method has achieved promising performances for brain age estimation and AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得30
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
ZZZ完成签到,获得积分10
4秒前
羊羊羊发布了新的文献求助10
4秒前
歪歪吸发布了新的文献求助10
4秒前
5秒前
xiaokun发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
王老裂发布了新的文献求助80
10秒前
歪歪吸完成签到,获得积分10
11秒前
北一君完成签到,获得积分10
11秒前
何靖馥琳完成签到,获得积分10
16秒前
丘比特应助库里强采纳,获得10
18秒前
LJL完成签到 ,获得积分10
22秒前
yong完成签到 ,获得积分10
32秒前
37秒前
852应助赫贞采纳,获得10
45秒前
50秒前
MRu发布了新的文献求助10
53秒前
56秒前
Dr_Zhan完成签到,获得积分10
59秒前
1分钟前
ayato发布了新的文献求助10
1分钟前
1分钟前
1717发布了新的文献求助30
1分钟前
1分钟前
ayato完成签到,获得积分20
1分钟前
Hello应助2025alex采纳,获得10
1分钟前
李燕完成签到,获得积分20
1分钟前
科研通AI5应助张华采纳,获得30
1分钟前
李爱国应助Xinscribe采纳,获得10
1分钟前
1分钟前
1分钟前
丘比特应助1717采纳,获得60
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147